Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to the coding problems.

1 (Regular Surface.) Show that a sphere $\left(S^{2}\right)$ is a regular surface using spherical coordinates.

Solution:

A sphere $\left(S^{2}\right)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{3}=1\right\}$ can be parametrized by using spherical coordinates. Let $V_{1}=\{(\theta, \psi) \mid 0<\theta<\pi, 0<\psi<2 \pi\}$ and a parametrization $\mathbf{x}_{1}: V_{1} \rightarrow$ \mathbb{R}^{3} is given by

$$
\mathbf{x}_{1}(\theta, \psi)=(\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta)
$$

This parametrization covers almost every part of the sphere (except the north and south poles, and a half great circle connecting them). In order to cover the whole sphere, we need more parametrizations, such as let $V_{2}=\{(\theta, \psi) \mid-\pi / 2<\theta<\pi / 2,0<\psi<2 \pi\}$ and a parametrization $\mathbf{x}_{2}: V_{2} \rightarrow \mathbb{R}^{3}$ such that

$$
\mathbf{x}_{2}(\theta, \psi)=(\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta)
$$

To prove that \mathbf{x}_{1} satisfies the three conditions (similar for \mathbf{x}_{2}):
(a) It is clear that the functios $\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta$ have continuous partial derivatives of all orders; hence, \mathbf{x}_{1} is differentiable.
(b) Given $(x, y, z) \in S^{2}-C$, where C is the semicircle

$$
C=\left\{(x, y, z) \in S^{2} ; y=0, x \geq 0\right\}
$$

θ is uniquely determined by $\theta=\cos ^{-1} z$, since $0<\theta<\pi$. By knowing θ, we find $\sin \psi$ and $\cos \psi$ from $x=\sin \theta \cos \psi, y=\sin \theta \sin \psi$, and this determines ψ uniquely $(0<\psi<2 \pi)$. It follows that \mathbf{x}_{1} has an inverse \mathbf{x}_{1}^{-1}.
(c) In order that the Jacobian determinants

$$
\frac{\partial(x, y)}{\partial(\theta, \psi)}=\cos \theta \sin \theta
$$

$$
\begin{aligned}
& \frac{\partial(y, z)}{\partial(\theta, \psi)}=\sin ^{2} \theta \cos \psi \\
& \frac{\partial(x, z)}{\partial(\theta, \psi)}=\sin ^{2} \theta \sin \psi
\end{aligned}
$$

vanish simultaneously, it is necessary that

$$
\cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta \cos ^{2} \psi+\sin ^{4} \theta \sin ^{2} \psi=\sin ^{2} \theta=0
$$

This does not happen in V_{1}, and condition 3 is satisfied.

2 (Short Cut 2 of Regular Surface.) Show Torus (T^{2}) is a regular surface using short cut 2.

See lecture 3 slides page 24-25.

