Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to the coding problems.

1 (Rigid Body.) Recall that
$S E(3)=\left\{\left.A\left|A=\left[\begin{array}{ll}R & \vec{v} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right], R \in \mathbb{R}^{3 \times 3}, \vec{v} \in \mathbb{R}^{3}, R^{T} R=R R^{T}=I, \operatorname{det}\right| R \right\rvert\,=1\right\}$,
where R is rotation and \vec{v} is translation. Show that $S E(3)$ is a group.

Solution:

Assume that $A_{i}=\left[\begin{array}{ll}R_{i} & \vec{v}_{i} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right] \in S E(3)$ satisfying $R_{i} \in \mathbb{R}^{3 \times 3}, \vec{v}_{i} \in \mathbb{R}^{3}, R_{i}^{T} R_{i}=R_{i} R_{i}^{T}=$ $I, \operatorname{det}\left|R_{i}\right|=1$, for $i=1,2,3$. We need to verify the following:

- Show $A_{1} A_{2} \in S E(3)$:

$$
A_{1} A_{2}=\left[\begin{array}{ll}
R_{1} & \vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{ll}
R_{2} & \vec{v}_{2} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]=\left[\begin{array}{ll}
R_{1} R_{2} & R_{1} \vec{v}_{2}+\vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right] .
$$

Since $R_{1} R_{2} \in \mathbb{R}^{3 \times 3}, R_{1} \vec{v}_{2}+\vec{v}_{1} \in \mathbb{R}^{3}$,

$$
\begin{aligned}
& \left(R_{1} R_{2}\right)^{T} R_{1} R_{2}=R_{2}^{T} R_{1} R_{1}^{T} R_{2}^{T}=I \\
& \operatorname{det}\left|R_{1} R_{2}\right|=\operatorname{det}\left|R_{1}\right| \operatorname{det}\left|R_{2}\right|=1
\end{aligned}
$$

we verified $A_{1} A_{2} \in S E(3)$.

- Show $\left(A_{1} A_{2}\right) A_{3}=A_{1}\left(A_{2} A_{3}\right)$: Since

$$
\left(A_{1} A_{2}\right) A_{3}=\left[\begin{array}{ll}
R_{1} R_{2} & R_{1} \vec{v}_{2}+\vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{ll}
R_{3} & \vec{v}_{3} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]=\left[\begin{array}{ll}
R_{1} R_{2} R_{3} & R_{1} R_{2} \vec{v}_{3}+R_{1} \vec{v}_{2}+\vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

and
$A_{1}\left(A_{2} A_{3}\right)=\left[\begin{array}{ll}R_{1} & \vec{v}_{1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]\left[\begin{array}{ll}R_{2} R_{3} & R_{2} \vec{v}_{3}+\vec{v}_{2} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]=\left[\begin{array}{ll}R_{1} R_{2} R_{3} & R_{1} R_{2} \vec{v}_{3}+R_{1} \vec{v}_{2}+\vec{v}_{1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]$,
we verified $\left(A_{1} A_{2}\right) A_{3}=A_{1}\left(A_{2} A_{3}\right)$.

- Exist identity element $I \in S E(3)$ such that $A_{1} I=A_{1}$: Let $I \in S E(3)=\left[\begin{array}{ll}I_{3 \times 3} & \mathbf{0}_{3 \times 1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]$ with I be the identity matrix in $\mathbb{R}^{3 \times 3}$.

$$
A_{1} I=\left[\begin{array}{ll}
R_{1} & \vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{ll}
I_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]=\left[\begin{array}{ll}
R_{1} & \vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]=A_{1} .
$$

- Exist identity inverse $A_{1}^{-1} \in S E(3)$ such that $A_{1} A_{1}^{-1}=I$: Let $A_{1}^{-1} \in S E(3)=$ $\left[\begin{array}{ll}R_{1}^{T} & -R_{1}^{T} \vec{v}_{1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]$.

$$
A_{1} A_{1}^{-1}=\left[\begin{array}{ll}
R_{1} & \vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{ll}
R_{1}^{T} & -R_{1}^{T} \vec{v}_{1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]=I
$$

