Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to the coding problems.

1 (1st fundamental form.) Compute the first fundamental form of a sphere at a point of the coordinate neighborhood given by the parametrization:

$$
\mathbf{x}(\theta, \psi)=(\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta)
$$

2 (Area.) Compute the area of the torus with the coordinate neighborhood corresponding to the parametrization:

$$
\mathbf{x}(u, v)=((a+r \cos u) \cos v,(a+r \cos u) \sin v, r \sin u), 0<u<2 \pi, 0<v<2 \pi,
$$

which covers the torus, except for a meridian and a parallel.

3 (Coding.) Please use the 6 features (accelerometer: $x, y, z$ and gyroscope: $x, y, z$ ) of $\mathrm{H}-\mathrm{MOG}$ dataset to do the following:
(a) Pick some users. For each user pick 3 out of the 6 features. (Or if you have time, you can try all the 20 combinations.)
(b) For each data point of the 3 features $v_{1}, v_{2}, v_{3}$, normalize the vector $\vec{v}=\left[v_{1}, v_{2}, v_{3}\right]$ by:

$$
\hat{v}=\frac{\vec{v}}{\|\vec{v}\|_{2}} .
$$

(c) Plot the normalized data points (vectors) on a sphere.

Note that a starter file is included under "resource" tab. Please feel free to ask TA if you have any question.

