Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to the coding problems.

1 (1st fundamental form.) Compute the first fundamental form of a sphere at a point of the coordinate neighborhood given by the parametrization:

$$
\mathbf{x}(\theta, \psi)=(\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta)
$$

Solution:

First observe that

$$
\begin{gathered}
\mathbf{x}_{\theta}(\theta, \psi)=(\cos \theta \cos \psi, \cos \theta \sin \psi,-\sin \theta) \\
\mathbf{x}_{\psi}(\theta, \psi)=(-\sin \theta \sin \psi, \sin \theta \cos \psi, 0)
\end{gathered}
$$

Hence,

$$
\begin{gathered}
E(\theta, \psi)=<\mathbf{x}_{\theta}, \mathbf{x}_{\theta}>=1 \\
F(\theta, \psi)=<\mathbf{x}_{\theta}, \mathbf{x}_{\psi}>=0 \\
G(\theta, \psi)=<\mathbf{x}_{\psi}, \mathbf{x}_{\psi}>=\sin ^{2} \theta .
\end{gathered}
$$

Thus, if w is a tangent vector to the sphere at the point $\mathbf{x}(\theta, \psi)$, given in the basis associated to $\mathbf{x}(\theta, \psi)$ by

$$
w=a \mathbf{x}_{\theta}+b \mathbf{x}_{\psi}
$$

then the square of the length of w is given by

$$
\begin{gathered}
|w|^{2}=I(w)=<w, w>=<a \mathbf{x}_{\theta}+b \mathbf{x}_{\psi}, a \mathbf{x}_{\theta}+b \mathbf{x}_{\psi}> \\
=<\mathbf{x}_{\theta}, \mathbf{x}_{\theta}>a^{2}+2<\mathbf{x}_{\theta}, \mathbf{x}_{\psi}>a b+<\mathbf{x}_{\psi}, \mathbf{x}_{\psi}>b^{2} \\
=E a^{2}+2 F a b+G b^{2}=a^{2}+\sin ^{2} \theta b^{2}
\end{gathered}
$$

2 (Area.) Compute the area of the torus with the coordinate neighborhood corresponding to the parametrization:

$$
\mathbf{x}(u, v)=((a+r \cos u) \cos v,(a+r \cos u) \sin v, r \sin u), 0<u<2 \pi, 0<v<2 \pi,
$$

which covers the torus, except for a meridian and a parallel.

Solution:

Since

$$
\begin{gathered}
\mathbf{x}_{u}(u, v)=(-r \sin u \cos v,-r \sin u \sin v, r \cos u) \\
\mathbf{x}_{v}(u, v)=(-(a+r \cos u) \sin v,(a+r \cos u) \cos v, 0),
\end{gathered}
$$

the coefficients of the first fundamental form are

$$
\begin{gathered}
E=<\mathbf{x}_{u}, \mathbf{x}_{u}>=r^{2} \\
F=<\mathbf{x}_{u}, \mathbf{x}_{v}>=0 \\
G=<\mathbf{x}_{v}, \mathbf{x}_{v}>=(a+r \cos u)^{2} ;
\end{gathered}
$$

hence,

$$
\sqrt{E G-F^{2}}=r(a+r \cos u) .
$$

Now, let $\epsilon>0$ and small. Consider the region R_{ϵ} obtained as the image by \mathbf{x} of the region Q_{ϵ} (Lecture 8 Part 1 Page 24) given by

$$
Q_{\epsilon}=\left\{(u, v) \in \mathbb{R}^{2} ; 0+\epsilon \leq u \leq 2 \pi-\epsilon, 0+\epsilon \leq v \leq 2 \pi-\epsilon\right\} .
$$

Use the definition of area (Lecture 8 Part 1 Page 22), we obtain

$$
\begin{aligned}
A\left(R_{\epsilon}\right)= & \iint_{Q_{\epsilon}} r(a+r \cos u) d u d v=\int_{0+\epsilon}^{2 \pi-\epsilon} r(a+r \cos u) d u \int_{0+\epsilon}^{2 \pi-\epsilon} d v \\
& =r^{2}(2 \pi-2 \epsilon)(\sin (2 \pi-\epsilon)-\sin \epsilon)+r a(2 \pi-2 \epsilon)^{2}
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$ in the above expression, we obtain

$$
A(T)=\lim _{\epsilon \rightarrow 0} A\left(R_{\epsilon}\right)=4 \pi^{2} r a
$$

3 (Coding.) Please use the 6 features (accelerometer: x, y, z and gyroscope: x, y, z) of $\mathrm{H}-\mathrm{MOG}$ dataset to do the following:
(a) Pick some users. For each user pick 3 out of the 6 features. (Or if you have time, you can try all the 20 combinations.)
(b) For each data point of the 3 features v_{1}, v_{2}, v_{3}, normalize the vector $\vec{v}=\left[v_{1}, v_{2}, v_{3}\right]$ by:

$$
\hat{v}=\frac{\vec{v}}{\|\vec{v}\|_{2}} .
$$

(c) Plot the normalized data points (vectors) on a sphere.

Note that a starter file is included under "resource" tab. Please feel free to ask TA if you have any question.

