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Grading:

¢ 5% Reading Summary

e 35% Homework

e 20% Midterm Progress report
e 40% Final Project
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Overview of Lecture 1

Why we need nonlinear data analysis?

— First starting with curves and their analysis

Similarity measurements for nonlinear data

— First a few examples: Arc-length, Geodesic length

Introduction to cell phone data
Introduction to rigid motion



Why do we need nonlinear data analytics and why
are they important?

 High dimensional datatypicallylivesonoris near a low-dimensional
manifold, but that manifold is not necessarily -- and usually not—linear!
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Why Nonlinear data analysis or manifold learning
can be important?

 High dimensional data typically lives on or is near a low-dimensional
manifold, but that manifold is not necessarily -- and usually not —
linear!

 Most of the new big data sets are coming generated by machine or
people. They often have nonlinearrelationshipsamongthem.

 Manifold Learningis relatively new and an exciting and important
application of geometry to machine learning.

* There area lot of theory behind the algorithm which can be
developed for publications and for solving hard real world
problems.

 Understandingnonlinear data analytics will benefitin applying
algorithms more effectively.

— E.g. Stock predicting/Algorithm trading
— https://github.com/VivekPa/IntroNeuralNetworks



Many big data sets need to be analyzed by
nonlinear data analysis, especially those
generated by machines.

 Where does big data come from?

Organizations

I\/I a C h i n e S E.g. Auto cars, UAVs, cell phone, other robots
People

Data is not new. But the scale has been changed!
The way how people using data has been transformed!



Types of big data

. Structured data (e.g. often Generated by
organizations)

. Semi-structured data (e.g. Generated by
machine with manual records)

. Unstructured data (often Generated by people)



 What exactly is big data?

* Does “big" here mean “big volume”?
* |Infact, thereare 5 “V”sto describe big data.

—Volume (Size)
—Velocity (Speed)
—Variety (Types)
—Veracity (Quality)
—Valence (Relationships)



As of 2011, the global size of
data in healthcare was
estimated to be

150 EXABYTES

[ 161 BILLION GIGABYTES ]

By 2014, it's anticipated
there will be

420 MILLION
WEARABLE, WIRELESS
HEALTH MONITORS

It's estimated that

2.5 QUINTILLION BYTES
[ 2.3 TRILLION GIGABYTES ]
of data are created each day

40 ZETTABYTES
[43 TRILLION GIGABYTES ]

of data will be created by
2020, an increase of 300
times from 2005

The
FOUR V’s
of Big
Data

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You

6 BILLION
PEOPLE

have cell
phones

You

30 BILLION ¢
From traffic patterns and music downloads to web PlECES UF CUNTENT
history and medical records, data is recorded, are shared on Facebook
stored, and analyzed to enable the technology every month

Most companies in the

U.S. have at least and services that the world relies on every day.
- But what exactly is big data, and how can these n
100 TERABYTES massive amounts of data be used? n "; 0 o

[ 100,000 GIGABYTES ]

of data stored As a leader in the sector, IBM data scientists
break big data into four dimensions: Volume,
Velocity, Variety and Veracity

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

WORLD POPULATION: 7 BILLION

Modern cars have close to

The New York Stock Exchange Depending on the industry and organization, big

Poor data quality costs the US
1[]0 SENSDRS data encompasses information from multiple

captures economy around
1TB OF TRADE ( that monitor items such as internal and external sources such as transactions, , i . "}‘[ TRILLION A YEAR
INFORMATION (\ fuel level and tire pressure social media, enterprise content, sensors and ?r?:ytutsrgsttotr::(g Zrergiastif:s
durin h tradi , mobile devices. Companies can leverage data to .
g each trading session

adapt their products and services to better meet
customer needs, optimize operations and
infrastructure, and find new sources of revenue.

Velocity E——

By 2015

Veracity
ANALYSIS OF 4.4 MILLION IT JOBS

L ]
ill b ted globally t t big data, UNCERTAlNTY
STREAMING DATA L < : SEE

in one survey were unsure of
how much of their data was
inaccurate

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYYYYYYYYYY
e S LR R R REL

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




Data to Decision (D2D)
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We need techniques of

Multivariate Data Analysis which analyzes and
captures the nonlinear relationships among a
given large data.



Toy Example of nonlinear relation among the data

a* - o 0 e :
L. P L___‘ < One of your team member get:

\'.‘ \. *  Result of fitting x-accelerometer data
‘b B oy ," of an auto car.
T s a,(t) = 2cos(t)
II 4 e ’
‘\ ' . "
y 7 -
Y ", : o
- L. ® e.’"

< Another your team member get:
Result of fitting y-accelerometer data

of the same auto car.

a,(t) =2 sin(t)

< You check: Both are on the
same time scale.

You get a conclusion: the acceleration of the caris almost at constant 2.
Why?



* Recall: There are relations between a,(t) and a,(t).

* If we consider the set of all (a,(t), a,(t)), these are
vectors live in R?.

 Butin fact, the data lives on or close to the circle of
radius 2.

e Thatis: there are nonlinear relations between
a,(t) and a,(t):
(a,(t))* + (a,(t))* =4

A circle is a simplest manifold.

Question: What if the datais so large that you can not
see the nonlinear relationships among the data?



There arerelations between a,(t) and a,(t).
If we consider the set of all (a,(t) , a,(t)), these are vectors live in R2.
But in fact, the data lives on or close to the circle of radius 2.
Thatis there are nonlinearrelations between

a (t) and a(t): (a,(t))*+ (a,(t))* =4

 Acircleisa simplestmanifold.

Question: Can we view as
a,(t) data as observationsof a randomvariable X, and

a,(t) data as observationsof a random variable Y? Then use the
correlatlon of Xand Y to detect the correlations between X and Y?

Answer: No!
Why? Because correlations only detect linear relations.



Recall: Correlation

Correlation of two random variables are defined
by “normalizing” the covariance of the two
random variables.

If we have a random vector, then we can define a
covariance matrix.

Covariance matrix is symmetric matrix, and in fact
it is semi positive definite matrix.

So the covariance matrix can be diagonalized,
with eigenvalues being none negative; which is
the base for PCA.



Covariance, and Covariance Matrix

* The covariance between two rv’s X and Y measures
the degree to which X and Y are (linearly) related;

defined as
cov[X,Y] & E[X-E[X])(Y —E[Y])]
Exercise
—E[XY]-E[X]E[Y]
If x is a d-dimensional random vector, its covariance matrix is
defined to be the following symmetric, semi positive definite

matrix:
covlx] 2 E|(x—E[x)(x—E[x)"
var [ X1 | cov [X1,Xs] --- cov [Xl,Xd]\
Ofen dencted | cov[Xo, X1] var[Xa] .-+ cov[Xa, X4
b‘j 2 — . : -
\cov [X.'d,Xl] CcoVv [)(.d,7X2] var .[Xd] )




correlation coefficient & correlation matrix

 The (Pearson) correlation coefficient between two
rvs X and Y is defined as
X.Y
corr [ X,Y] = cov |X, Y|
e [fXandYare \/V&I‘ [X] var [Y]

indep.,thencov[X,Y]=0; sayXandY are uncorrelated.

e A correlation matrix of a random vector has the form:

(corr[Xl,Xl] corr [ X1, Xo| --- COI‘I‘[X1,Xd]\
R = ; . :

\Corr (X4, X1] corr|Xy,Xs| -+ corr [Xd,Xd])

Exercise: show that -1 € corr [X, Y ] € 1 and
Show that corr[X,Y] = 1 Yf ¥ = aX +b for some parameters a and b,



Example of Correlation Coefficients

that the correlation reflects the noisiness and direction of a linear relationship (top row), hut not the slope
of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the
center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y
is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png

E.g. It did not detect the data
living close to a circle.



Multivariate Data Analysis

When data is big, We have little visual guidance to help us
identify any meaningful low- dimensional structure hidden
in high-dimensional data.

The linear PCA can be extremely useful in discovering low-
dimensional structure when the data actually lie in a linear
(or approximately linear) lower-dimensional subspace.

But what if the data lives or nearly a nonlinear curved
space (called a manifold) M in RN, whose structure and
dimensionality are both assumed unknown?

Our goal of dimensionality reduction then becomes one of

identifying the nonlinear manifold in question. The problem
of recovering that manifold is known as nonlinear manifold

learning.



e Therefore it is crucial to understand nonlinear
data analytics or manifold learning...



What is a manifold?

* An n-dimensional manifold
ocally “looks like” a piece of R".

* For examples, sphere and torus.

e Key features of a manifold:
curved

The sphere (surface of a ball) is a two-dimensional &
manifold since it can be represented by a collection of two-

dimensional maps.
X' =
< . -

M*

S,

* Only manifolds can capture
UAV’s dynamical behaviors




* How to model and capture the dynamics and
kinematics of an UAV?

N
=

Ron

1
Longttodlru’




You may wonder: How to use manifold to study UAV data?
Simplest case: drawing a curve on a sphere
Try to capture characteristics of flight controls

For example: Only look at UAV
“headings”

All possible headings for all UAVs form
a sphere.

Only consider UAV heading directions here,
but works for any other UAV characteristics * Key: Developed a dimension-

reduction technique for large

4
f / nonlinear data.
Just recording the heading while a UAV is
flying gives a heading-behavior curve.



Overview of nonlinear analytic
techniques

One of the existing powerful dimension reduction
methods is the Principal Component Analysis (PCA).
(In fact, it is a Linear PCA).

Later in this course, we will extend linear PCA to None
Linear PCA.

We will transform nonlinear items to linear items, and
the use Machine Learning methods in linear space and
them map them back. (e.g. Log and Exponential Maps)

Kernel methods
ISOMAP



Overview of Lecture 1

* Why we need nonlinear data analysis?

— First starting with curves and their analysis

B)- Similarity measurements for nonlinear data
— First a few examples: Arc-length, Geodesic length

* Introduction to cell phone data
* Introduction to rigid motion



Similarity measurements for nonlinear data
Concept of manifold and nonlinear Euclidean distance




Another examples

 UAV Mishap Analysis
* Anomaly Detectionsin UAV systems



Example:
Identified various causes affecting UAV behaviors
for anomaly detection in UAV systems

UAV-Health Enwronmental Cyber
& Status condltlons attacks

Example: The causes of this mishap
1) Engine overheat: coolant line leakin¢
2) Lost control: human error 2

Lessen Learned: Many mishaps
resulted from combined causes but
no metric for a combination of
anomaly behaviors!




How could nonlinear data analysis be useful here?
A simple example
We use math to model behaviors of an UAV:

Imagine an UAV
is just a point
as in the video.

This example uses
the true data from
an UAV instructor
on how to control
an UAV climb up.

The curve
represents

a trajectory of
the UAV the
student is
controlling.

Our method could
fix issues such as
missing data.




How to fill the missing data here?

* Thisis justbecause of descri
missing data. °

* We canconfirmit by What.
the dynamicsand descri

kinematics of an UAV.

e t

KINC

e t

* Linear interpolation here
may not make sense.

* We need to use other
narts of the trajectory to
oredict how this missing
nart should look like.

* We need mathematically

ne trajectory.

of curve best

ne trajectory?



Here are the trajectory of
Studentl and Student2

1400 .
1200
1000
800
600

400 .

200
6000~

1000

Q: What are the differences between the instructor’s trajectory and that of the students?



Compare with the instructor’s
trajectory with that of the student

What kind of
differences you have
seen’?

How to describethe
dissimilarity?

Need non Euclidean
metrics.




Recall: Helix Curve

05

"0.5 1
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* How to describe a helix curve?
* They could have different orientations!



You could think of a curve ¢ : R - R? as being a wire. For example, ¢(f) = (cos ¢, sin t, £), for 0 < ¢ < 6, is the parametrization of
a helix. You can view it as a slinky or a spring.

t

]|
o

Parametrized helix. The vector-valued function ¢(f) = (cos ¢, sin t, f) parametrizes a helix, shown in blue. This helix is the
image of the interval [0, 6z] (shown in cyan) under the mapping of ¢. For each value of ¢, the red point represents the vector
¢(?). As you change ¢t by moving the cyan point along the interval [0, 67], the red point traces out the helix.



In general: Parametrized Curve

Parametrized and Regular Curves

Definition
A parametrized differentiable curve is a differentiable map o : | — R3 of
an open interval | = (a, b) of the real line R into R3.

Definition
A parametrized differentiable curve v : | — R3 is said to be regular if
a/(t) #0 forall t € 1.

Definition
We say that s € | is a singular point of order 1 if a/’(s) =0 (in this
context, the points where o/(s) = 0 are called singular points of order 0).



Examples

Example 1
The map a : R — R? given by a(t) = (t,|t]),t € R (not differentiable).

}'




Examples

Example 2
A helix of pitch 27b on the cylinder x> + y? = a°.




Examples

Example 3
The map o : R — R? given by a(t) = (t3,t?),t € R.




Examples

Example 4
The map o : R — R? given by «o(t) = (3 — 4t,t*> — 4),t € R.




Arc Length of a Curve
Definition

Given t € I, the arc length of a regular parametrized curve o : | — R3,
from the point tp, is by definition

S(t) = /to ' (6)] de.

where

|/ (8)| = V(X' (£)) + (v'(£))? + (2/(¢))?
is the length of the vector o/(t).
Definition

A parametrized curve o : | — R3 is said to be parametrized by arc length
if [[@’(t)|| =1 (that is, if a has unit speed) for all t € /.



Parametrization by Arc Length

Proposition (Geometric meaning of above definition)

A curve o : | — R3 is parametrized by arc length if and only if the
parameter t is the arc length of o« measured from some point.

Proof.

Proposition (Advantages of ||&/(s)|| = 1)
Let o : | — R3 be a curve parametrized by arc length. Then o''(s) is
orthogonal to o/ (s) for all s € I.

Proof.



Reparametrization by Arc Length

Example
Consider the helix o : R — R? given by «(t) = (cos t,sin t, t).

» From now on, we are going to assume curves are parametrized by
arc length.



Curvature

Geometric Meaning

Let « : | = (a, b) — R> be a curve parametrized by arc length s. Since
the tangent vector &/(s) has unit length, the norm ||a”(s)|| of the second
derivative measures the rate of change of the angle which neighboring
tangents make with the tangent at s. ||a”(s)|| gives, therefore, a
measure of how rapidly the curve pulls away from the tangent line at s,
in a neighborhood of s.

Definition
Let o : | — R3 be a curve parametrized by arc length s € /. The number
|a”(s)|| = k(s) is called the curvature of « at s.



Torsion

Geometric Meaning

Since b(s) is a unit vector, the length [[b’(s)|| measures the rate of
change of the neighboring osculating planes with the osculating plane at
s; that is b’(s) measures how rapidly the curve pulls away from the
osculating plane at s, in a neighborhood of s.

n




Frenet Frame
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Fundamental Theorem of the Local Theory of Curves

Theorem

Given differentiable functions k(s) > 0 and 7(s),s € I, there exists a
regular parametrized curve o : | — R3 such that s is the arc length, k(s)
is the curvature, and 7(s) is the torsion of c« Moreover, any other curve &
satisfying the same conditions differs from o by a rigid motion; that is,
there exists an orthogonal map p of R3, with positive determinant, and a
vector ¢ such that @ = po o + c.

Proof of uniqueness.

Claim: arc length, curvature, and torsion are invariant under the rigid
motion. []



Techniques in Geometric Analysis:

Example

Assume that all normals of a parametrized curve pass through a fixed
point. Prove that the trace of the curve is contained in a circle.

Homework: Rewrite all the proofs in the example.



Note: Homework will be given in the
lecture.



Homework problems

* Problem A

Let «(t) be a parametrized curve which does not pass through the origin.
If a(tp) is the point of the trace of «a closest to the origin and /() # 0,
show that the position vector a(ty) is orthogonal to o/(ty).



Homework problems

* Problem B

Show that the set of rigid motions forms a group.



Creative activity - Extra Credit

How to create a transformation from the data on some
helix to the data of the instructor’s trajectory?

Review different operators in R?, e.g. we have shear map
below. Here we want to shear a curve! For more info:

-1

&

1

15
102
5

https://en.wikipedia.org/wiki/Transformation
matrix

For shear mapping (visually similar to slanting), there are two
possibilities.

A shear parallel to the x axis has ' = x + ky and ¢ = y. Written in
matrix form, this becomes:

)=l ]G

A shear parallel to the y axis has ' = x and ¥ = y + kx, which has
matrix form:

o)=Ll



Overview of Lecture 1

* Why we need nonlinear data analysis?

— First starting with curves and their analysis

e Similarity measurements for nonlinear data

— First a few examples: Arc-length, Geodesic length
)+ Introduction to cell phone data
* Introduction to rigid motion



Introduction of Cell Phone Data

* There are a lot of data sets available online
* For examples:

* 1. HMOG data set:
http://www.cs.wm.edu/~qyang/hmog.html




Rotation Data

Rotation data is returned as a Euler angle, representing the number of degrees of difference between the device
coordinate frame and the Earth coordinate frame.

Alpha

The rotation around the z axis. The alpha valueis 0°
when the top of the device is pointed directly north.
As the device is rotated counter-clockwise, the

alpha value increases.

h

lllustration of alpha in the device coordinate frame



Beta

The rotation around the x axis. The beta valueis 0°
when the top and bottom of the device are
equidistant from the surface of the earth. The value
increases as the top of the device is tipped toward
the surface of the earth.

& beta

[llustration of beta in the device coordinate frame



Gamma

The rotation around the y axis. The gamma value is 0°
when the left and right edges of the device are
equidistant from the surface of the earth. The value
increases as the right side is tipped towards the
surface of the earth.

Z

<
\/ gamma

lllustration of gamma in the device coordinate frame



Concept of Moving Frame




Real world Application

* Using cell phone data to authenticate users.
* Very hard problem and lots of math involved



H-MOG Data Set: A Multimodal Data Set for
Evaluating Continuous Authentication
Performance in Smartphones

Qing Yang, Ge Peng, David T. Nguyen, Xin Q1, Gang Zhou (Colleget of
William and Mary)
Zdenka Sitova (New York Institute of Technology; Masaryk University)
Paolo Gasti, Kiran S. Balagani (New York Institute of Technology)

1. Introduction

We performed a large-scale user study to collect a wide spectrum of signals
about user behaviors on smartphones, including touch, gesture, and
pausality of the user, as well as movement and orientation of the phone.
This dataset has been used to evaluate a continuous authentication
modality named H-MOG in smartphones. A detailed description of this
dataset and its application is in our poster paper (PDF) in ACM SenSys'14.
The H-MOG paper using this dataset is published on IEEE Transactions on
Information Forensics and Security (link on IEEE Xplore).




Abstract:

We introduce hand movement, orientation, and grasp (HMOG), a set of behavioral
features to continuously authenticate smartphone users. HMOG features unobtrusively
capture subtle micro-movement and orientation dynamics resulting from how a user
grasps, holds, and taps on the smartphone. We evaluated authentication and biometric
key generation (BKG) performance of HMOG features on data collected from 100
subjects typing on a virtual keyboard. Data were collected under two conditions: 1)
sitting and 2) walking. We achieved authentication equal error rates (EERs) as low as
7.16% (walking) and 10.05% (sitting) when we combined HMOG, tap, and keystroke
features. We performed experiments to investigate why HMOG features perform well
during walking. Our results suggest that this is due to the ability of HMOG features to
capture distinctive body movements caused by walking, in addition to the hand-
movement dynamics from taps. With BKG, we achieved the EERs of 15.1% using
HMOG combined with taps. In comparison, BKG using tap, key hold, and swipe
features had EERs between 25.7% and 34.2%. We also analyzed the energy
consumption of HMOG feature extraction and computation. Our analysis shows that
HMOG features extracted at a 16-Hz sensor sampling rate incurred a minor overhead
of 7.9% without sacrificing authentication accuracy. Two points distinguish our work
from current literature: 1) we present the results of a comprehensive evaluation of
three types of features (HMOG, keystroke, and tap) and their combinations under the
same experimental conditions and 2) we analyze the features from three perspectives
(authentication, BKG, and energy consumption on smartphones).



* Please Download from the webpage

* You will get a zip file

B hmog_dataset.zip

1100669

100669.zip
151985.zip
171538.zip
180679.zip
186676.zip

TIN1A1Q =i

| public_dataset

100669 _session_1
"1 100669_session_2

100669_session_3
100669_session_4
100669_session_5

~ 1 100669_session_6
~ 1 100669_session_7
1 100669_session_8

100669_session_9
100669_session_10

APNININININ oy e

@. Accelerometer.csv

@. Activity.csv

@. Gyroscope.csv

f. KeyPressEvent.csv

@. Magnetometer.csv

@. OneFingerTouchEvent.csv
@. PinchEvent.csv

M Readinglanswer

M Reading2answer

M Reading3answer



What are those data sets? For
example, what is gyroscope data?

e There is a read me at the end of the data set with all
zip files of all user IDs.

¢ Y/3BYILZIP
' 980953.zip
¥ 984799.zip
¥ 986737.zip
¥ 990622.zip
' 998757.zip

. data_description.pdf




1. Activity.csv

Data Description

Name Description
Composed as:
ID SubjectID + Session_number + ContentID +
Run-time determined Counter value
SubjectID 6 digits: ID of current subject

Session_number

1-24: session number for current subject

Start_time

Start time of current activity, in absolute
timestamps

End_time

End time of current activity, in absolute
timestamps

Relative_Start ti
me

Start time of current activity, relative to system
boot

Relative_End_ti
me

End time of current activity, relative to system
boot




Gesture_scenario | 1: Sit 2:Walk

1,7,13,19: Reading + Sitting
2,8, 14, 20: Reading + Walking
TaskID 3,9,15,21: Writing + Sitting
4,10, 16, 22: Writing + Walking
5,11,17,23: Map + Sitting

1: first sub-task

ContentID
2: second sub-task 3: third sub-task




2. Accelerometer.csv

Name Description
Systime Absolute time-stamp
EventTime | gongor event relative time-stamp
ActivitylD Belonged activity
X Acceleration minus Gx on the x-axis
Y Acceleration minus Gy on the y-axis
Z Acceleration minus Gz on the z-axis

Phone_orientati
on

0: Portrait and no rotate
1: device rotated 90 degrees counter-clockwise

3: device rotated 90 degrees clockwise




3. Gyroscrope.csv

Name Description
Systime Absolute time-stamp
Eventlime | gengor event relative time-stamp
ActivitylD Belonged activity
X Angular speed around the x-axis
Y Angular speed around the y-axis
Z Angular speed around the z-axis
0: Portrait and no rotate
Phone_orientati
on 1: device rotated 90 degrees counter-clockwise
3: device rotated 90 degrees clockwise




4. Magnetometer.csv

Name Description
Systime Absolute time-stamp
EventTime Sensor event relative time-stamp
ActivitylD Belonged activity
Ambient magnetic field in the X axis in
X :
micro-Tesla (uT)
Ambient magnetic field in the Y axis in
Y :
micro-Tesla (uT)
7 Ambient magnetic field in the Z axis in micro-

Tesla (uT)

Phone_orientation

O: Portrait and no rotate

1: device rotated 90 degrees counter-
clockwise

3: device rotated 90 degrees clockwise




5. TouchEvent.csv

Name Description
Systime Absolute time-stamp
EventTime Sensor event relative time-stamp
ActivityID

Belonged activity

Pointer count

1: Single touch
2: Multi-touch

0: Single touch; or first pointer in multi-touch

PointerID
1: Second pointer in multi-touch
0 or 5: DOWN
ActionID 1 or 6: UP
2: MOVE
X Touch location in X coordination
Y Touch location in Y coordination
Pressure Touch pressure

Contact_size

Touch contact size

Phone_orientation

0: Portrait and no rotate

1: device rotated 90 degrees counter-
clockwise

3: device rotated 90 degrees clockwise




Homework

* Please read the following paper:

Journals & Magazines > |EEE Transactions on Informat... > Volume: 11 Issue: 5 2]

HMOG: New Behavioral Biometric Features for Continuous
Authentication of Smartphone Users

* https://ieeexplore.ieee.org/document/73492
027arnumber=7349202




Overview of Lecture 1

* Why we need nonlinear data analysis?

— First starting with curves and their analysis

e Similarity measurements for nonlinear data

— First a few examples: Arc-length, Geodesic length

* Introduction to cell phone data
®) * Introduction to rigid motion



Introduction to Rigid Motion
Details of Hard Math Behind UAV Data
(similar for cell phone data
or auto vehicle data)

* Moving frames

* The set of orthonormal matrices

* The set of rotations in R3

e Lie group SO(3)

 Work out details with students on the board.



Viewing an UAV as a point is not enough
since it has more complicated dynamics such as
pitch, roll, yaw and their angular velocities

Details later!




How to set a good coordinate system
to model a problem?

-
-
—
--------

R\ C,thc) https://www.researchgate.net/publication/320
( W 095672 Landmark based localization in urb

an environment




For Example: we want a computerto
mathematically understand a pilot’s manual flight
control skill. Then we can compare between good

controls and poor controls.

Key: This kind of mathematics captures dynamical
behaviors of any UAVs

I/
\

RN

-
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* Metric Learning and Manifolds: Preservingthe Intrinsic Geometry

 https://www.stat.washington.edu/mmp/geometry/reading-
groupl7/html/RMetric.pdf

Abstract

A variety of algorithms exist for performing non-linear dimension reduction, but these algorithms
do not preserve the original geometry of the data except in special cases. In general, in the
low-dimensional representations obtained, distances are distorted, as well as angles, areas, etc.
This paper proposes a generic method to estimate the distortion incurred at each point of an
embedding, and subsequently to “correct” distances and other intrinsic geometric quantities back
to their original values (up to sampling noise).

Our approach is based on augmenting the output of an embedding algorithm with geometric
information embodied in the Riemannian metric of the manifold. The Riemannian metric allows
one to compute geometric quantities (such as angle, length, or volume) for any coordinate system or
embedding of the manifold. In this work, we provide an algorithm for estimating the Riemannian
metric from data, consider its consistency, and demonstrate the uses of our approach in a variety
of examples.



Figure 5: Two-dimensional visualization of the faces manifold, along with embedding. The color corresponds to the left-right motion of the
faces. The embeddings shown are: (a) Isomap, (b) LTSA, and Diffusion Maps (A = 1) (c) . Note the very elongated ellipses at the
top and bottom of the LTSA embedding, indicating the distortions that occurred there.



Find a paper to read
which does the analysis using HMOG data

* Read
* Give a 1-2 page summary



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

HMOG: New Behavioral Biometric Features for
Continuous Authentication of Smartphone Users

Zdeiika Sitovd, Jaroslav Sedénka, Qing Yang, Ge Peng, Gang Zhou, Senior Member, IEEE,
Paolo Gasti, Member, IEEE, and Kiran S. Balagani, Member, IEEE
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Fig. 8. HMOG features extracted during and between taps. The figure shows a sample of readings from the z-axis of accelerometer in sitting condition.
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