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Today

Cell phone data in quaternion representations
Gyroscope measurement models

Accelerometer measurement models
Choosing the state and modeling its dynamics

Model for the prior and probabilistic models



Quaternions for Quest3D

Quaternion is a data type suitable for defining object orientation and rotations. Quaternions are easier to work with
than matrices and using quaternions helps to avoid gimbal lock problem like in case of Euler angles usage.

Tasks like smooth interpolation between three-dimensional rotations and building rotation by vector are fairly
simpler to solve with quaternions than with Euler angles or matrices. Industrial grade inertial trackers and many
other orientation sensors can return rotational data in quaternion form, also to avoid gimbal lock problem, and make
such values easier to filter by interpolation.

1. Rotations in Euler angles 2. When all three circles are lined up,
can be defined like gimbal § the whole system can only move .
system with three circles ' in two dimensions from this configuration, |
this is a gimbal lock :

3. Usage of quaternions
can help to avoid such
situations

Gimbal lock problem



Yaw d)

Recall:
Pitch, Roll, and Yaw

Pitch

Center of
Gravity

Pitch Axis

+ Pitch

Roll Axis



Why does a unit quaternion represent
a rotation and how?

e Work out details with the students on the
board.



Unit Quaternion and Euler Angles

* Each unit quaternion can be associated to a
rotation around an axis.

q = q,, = cos(a/2)

q = q, = sin(a/2) cos(5.)
9 = q, = sin(a/2) cos(Sy)
q3 = q, = sin(a/2) cos(f:)

T T
A= ¢ ¢ ¢ =l®w & & q]
d’ =@+ +@+E =G+ +a@+¢ =1



Complication: There are several
different Fields, Poles, and Frames

Gravitational fields
Electric fields
Magnetic fields
Magnetic pole
Geographic pole
Heliocentric frame
Geocentric frame



Examples of gravitational fields: Test object: Examples of magneticfields:
* Things falling to Earth charged object (+) * Magnets
* The Earth orbiting the sun * Using a compass

Test object: magnet

Test object: Anything
with mass

/,;'l ‘
(.{_))
Examples of electricfields:

* Static electricity
* Lightning

e A field line (or vector diagrams) tells us the direction and
strength of a field

— The direction of a field is determined by the direction a test object
will move



Precession Applied

Magnetic
C_) Field

N




Precession

* The slow movement
of the axis of a
spinning body around
another axis due to a
torque (such as
gravitational
influence) acting to
change the direction
of the firstaxis. It is
seen in the circle
slowly traced out by
the pole of a spinning
gyroscope.




North Magnetic pole and
Geographic North pole




North Magnetic pole
and
Geographic North pole

Geographic north and south poles are determined by the
earth's spin. They are the locations on earth through which
the axis of the earth's spin passes. Magnetic north is
determined by the direction a compass points. Magnetic
variance, or declination, is the difference between
geographic north and magnetic north.



R A\ Original direction to stars
. 1 heliocentric frame

. '
1
|

New direction to stars
heliocentric frame

Q \
However in a geocentric frame non-rotating with respect to stars  _~

the sectors where the moon speeds up and then slows .°
down are actually moving forward inside the orbit. .°

www.speed-light.info




PC é Original direction to stars
. 1 heliocentric frame

New direction to stars
heliocentric frame

%)
Heliocentrism is the astronomical model in which the Earth and planets revolve .
around the Sun at the center of the Solar System. Historically, heliocentrism was
opposed to geocentrism, which placed the Earth at the center.

‘----------------------})4-----------------

www.speed-light.info
Sun



R’ é Original direction to stars
. 1 heliocentric frame
1

New direction to stars
heliocentric frame

In a heliocentric frame non-rotating with respect to stars light L* S
travels in a straight line; hence this is a perfectly inertial frame. .
However in this inertial frame Earth does not travel in a Lt
straight line; hence the geocentric frame is non-inertial. -~

A Original direction
: to stars

‘o
-------------------N---------------- -
www.speed-light.info

Sun
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4 different frames

The body frame b is the coordinate frame of the moving IMU. Its origin is located in the center of

The

The

The

the accelerometer triad and it is aligned to the casing. All the inertial measurements are resolved
in this frame.

navigation frame n is a local geographic frame in which we want to navigate. In other words, we
are interested in the position and orientation of the b-frame with respect to this frame. For most
applications it is defined stationary with respect to the earth. However, in cases when the sensor
is expected to move over large distances, it is customary to move and rotate the n-frame along
the surface of the earth. The first definition is used throughout this tutorial, unless mentioned

explicitly.

inertial frame 2 is a stationary frame. The IMU measures linear acceleration and angular velocity
with respect to this frame. Its origin is located at the center of the earth and its axes are aligned

with respect to the stars.

earth frame e coincides with the i-frame, but rotates with the earth. That is, it has its origin at
the center of the earth and axes which are fixed with respect to the earth.



Using subscripts b, e, n, | to denote
the four different frames

e the n-frame at a
certain location on
the earth,

e the e-frame
rotating with the
earth and

e the i-frame.




* A gyroscope measures the sensor’s angular
velocity, i.e. the rate of change of the sensor’s
orientation.

* An accelerometer measures the external
specific force acting on the sensor.



Inertial Sensor and IMUs

The term inertial sensor
is used to denote the
combination of a three-
axis accelerometer anda
three- axis gyroscope.

Devices containingthese
sensorsarecommonly
referred to as inertial
measurementunits
(IMUs).

Inertial sensors are
nowadays also present
in most modern
smartphone,andin
devices such as Wii
controllers and virtual
reality (VR) headsets.

(a) Left bottom: an Xsens MTx IMU [155]. Left top: a
Trivisio Colibri Wireless IMU [147]. Right: a Samsung

Galaxy S4 mini smartphone.

(b) A Samsung gear VR.!

c) A Wii controller containing an accelerometer
wnd a MotionPlus expansion device containing a
syroscope.?



MEMS has large # of Applications. Bellow all use of a single IMU
placed on a moving object to estimate its pose.

(a) Back pain therapy using serious gaming. IMUs
are placed on the chest-bone and on the pelvis to es-

timate the movement of the upper body and pelvis. (b) Actor Seth MacFarlane wearing 17 IMUs to capture his

This movement is used to control a robot in the . .

game and promotes movements to reduce back pain motion and animate the bear Ted. The IMUs are placed on
different body segments and provide information about the rel-

ative position and orientation of each of these segments.

) ) T ) (b) Due to their small size and low weight, IMUs
(a) Inertial sensors are used in combination with GNSS mea- can be used to estimate the orientation for control

surements to estimate the position of the cars in a challenge on

. - of an unmanned helicopter.
cooperative and autonomous driving.



Dead-reckoning

angular
velocity / orientation

—1

>

external
specific
force remove acceleration / / position

——»| rotate . —>
gravity

Y

>

Figure 1.4: Schematic illustration of dead-reckoning, where the accelerometer measurements (external

specific force) and the gyroscope measurements (angular velocity) are integrated to position and orien-
tation.



Caution!

e Accelerometerdatais not the record of
acceleration!



we must understand rotations even when we just
want to use accelerometer data in our analysis

« Why? Say if we want to get the position data
of the user, we can not just simply integrate
twice of accelerometer data since
accelerometer data is not acceleration (the
second derivative of the position);

* rather the accelerometer data is recorded by
an accelerometer which measures some
specific force f in the body frame.



The relation between this force f ( the
accelerometer data) and the linear
acceleration a is given below:

b bn/; n n
f7=R"(a; —g"),
where
R denote the rotation,

g denotes the gravity vector and

a denotesthe linearacceleration of the sensor expressedin navigation
frame.

We use a superscriptto indicate in which coordinate frame a vector is
expressed.



Again: Four different frames
we are going to use

* 1. The cell phone body frame b.
e 2. The navigation frame n.

e 3. Theinertial frame . (This is the fixed
frame! Note it does not even depending on
the earth’s rotation. We have to do analysis
by moving everything into this frame.)

e 4. The earth frame e.



4 different frames

The body frame b is the coordinate frame of the moving IMU. Its origin is located in the center of

The

The

The

the accelerometer triad and it is aligned to the casing. All the inertial measurements are resolved
in this frame.

navigation frame n is a local geographic frame in which we want to navigate. In other words, we
are interested in the position and orientation of the b-frame with respect to this frame. For most
applications it is defined stationary with respect to the earth. However, in cases when the sensor
is expected to move over large distances, it is customary to move and rotate the n-frame along
the surface of the earth. The first definition is used throughout this tutorial, unless mentioned

explicitly.

inertial frame 2 is a stationary frame. The IMU measures linear acceleration and angular velocity
with respect to this frame. Its origin is located at the center of the earth and its axes are aligned

with respect to the stars.

earth frame e coincides with the i-frame, but rotates with the earth. That is, it has its origin at
the center of the earth and axes which are fixed with respect to the earth.



Using subscripts b, e, n, | to denote
the four different frames

e the n-frame at a
certain location on
the earth,

e the e-frame
rotating with the
earth and

e the i-frame.




How to rotate vectors from one frame
to another?

Example 2.1 (Rotation of vectors to different coordinate frames) Consider a vector x expressed
in the body frame b. We denote this vector x®. The rotation matriz R™ rotates a vector from the body

frame b to the navigation frame n. Conversely, the rotation from navigation frame n to body frame b

is denoted R"™ = (R™)T. Hence, the vector x expressed in the body frame (x°) and expressed in the
navigation frame (z™) are related according to

xn — Rnbxb’ .’l?b — (Rnb)Txn — RanL‘n.

I { M Rotate from fromb to n

X n = R n b X b As if b cancelled, left n

(2.1)



What does a gyroscope exactly measure?

The gyroscope measures the angular velocity of
the (cell phone) body frame with respect to the
inertial frame, expressed in the body frame,

denoted by w! . This angular velocity can be expressed as

b _ pbn b
Wip = R (w -+ wen) -+ Whh s

where RP" is the rotation matrix from the navigation frame to the body frame. The earth rate, i.e.
the angular velocity of the earth frame with respect to the inertial frame is denoted by wj.. The earth
rotates around its own z-axis in 23.9345 hours with respect to the stars [101]. Hence, the earth rate is
approximately 7.29-107° rad/s.

In case the navigation frame is not defined stationary with respect to the earth, the angular velocity
Wen, 1.€. the transport rate is non-zero. The angular velocity required for navigation purposes — in which
we are interested when determining the orientation of the body frame with respect to the navigation
frame — is denoted by wyp.



What does a accelerometer exactly
measure?

* The accelerometer measures the specific
force f in the body frame b. This can be
expressed as

fb — Rbn(airi —9g"),

where g denotes the gravity vectorandan a;; denotes the linear

acceleration of the sensor expressed in the navigation frame, whichiis

n ne pel 1
a;; = RRa..
11 11
The subscripts are used to indicate in which frame the differentiation is

performed.



Ask yourself: In which frame the
derivative was taken?

For example:

For navigation purposes, we are interestedin
the position of the sensor in the navigation
frame p" and its derivatives as performed in the

navigation frame:

d n . n d n __ n
Ep n—Un, a?} n_a’nn’



How are a;; and a,, are exactly related?

* Arelation between a; and a,, can be derived
by using the relation between two rotating
coordinate frames. Given a vector x in a
coordinate frame u,

ypmduct rule, but be caution
d u‘ _d puv V‘ uv d } u u
G|, = gt | =R Zat| Fwy X2,

where wy,, is the angular velocity of the v-frame with respect to the u-frame, expressed in the u-frame.

where we have use the two equations on previous 2 slides and use the
fact that the angular velocity of the earth is constant,

: d
1. €. dtw — ().



We often want to view v; and a;; in the
inertial frame. How?

* Using the fact that

1 1e e
— R :

the velocity v; and acceleration a;; can be expressed as

1 d 1 d pie, e ie

vi—ap‘— R*p }—R dtp‘—FwIGXp—v +wle><p,

. 1

aii_avl’ _dt e’ +dt 1exp{ CL +2wiexve+wiexwiexp7
(2.8a)

(2.8b)



Similarly we can express velocity v and
acceleration a in earth coordinates

Using the relation between the earth and navigation frames,
Renpn _|_ nne,

where n,. is the distance from the origin of the earth coordinate frame to the origin of the navigation
coordinate frame, expressions similar to (ﬁ) can be derived. Note that in general it can not be assumed
that < 3iWen = 0. Inserting the obtained expressions into (2.8), it is possible to derive the relation between
i and ann - Instead of deriving these relations, we will assume that the navigation frame is fixed to the
earth frame, and hence R°" and n{, are constant and

v = %pel — dRen n‘ — Ren dtpn’nzvfn (2.10&)
= | =aj (2.10Db)

ee dte’_dtn

 Thisis areasonableassumption aslongas thesensor does not travel over
significant distances as compared to the size of the earth and it will be one
of the model assumptions thatwe will use in this course.



Now we can derive the relation of
accelerations in different frames.

Inserting (2.10) into (2.8) and rotating the result,
it is possible to express a:; in terms of ay,, as

Coriolis acceleration. centrifugal acceleration

This is a reasonable assumption as long as the sensor does not travel over
significant distances as compared to the size of the earth and it will be one of

the model assumptions.

Because this model assumption, it is not a good idea to put
all the data collected from everywhere in this world into on
data set. Keeping them apart has its advantages.



Example 2.2 (Magnitude of centrifugal and Coriolis acceleration) The centrifugal acceleration
depends on the location on the earth. It is possible to get a feeling for its magnitude by considering the
property of the cross product stating that

lowie X wie X ™2 < [lwiell2llwicll2llp™[|2- (2.12)

Since the magnitude of w;. is approzimately 7.29-107° rad/s and the average radius of the earth is
6371 km [101], the magnitude of the centrifugal acceleration is less than or equal to 3.39-1072 m/s?.
The Coriolis acceleration depends on the speed of the sensor. Let us consider a person walking at a
speed of 5 km/h. In that case the magnitude of the Coriolis acceleration is approximately 2.03 - 10~% m/s?.
For a car traveling at 120 km/h, the magnitude of the Coriolis acceleration is instead 4.86-1073 m/s?.

We can use them to detect whether a
person Is in car or not.






Get used to see things from different
points of view, especially for rotations

Example 3.2 (Rotation of a coordinate frame and rotation of a vector) Consider the 2D ez-
ample in Figure 3.3, where on the left, a vector x is rotated clockwise by an angle a to xy. This is

equivalent to (on the right) rotating the coordinate frame v counterclockwise by an angle o. Note that
xy =z

X X
(87
v

v
u

S\

A 4

Figure 3.3: Left: clockwise rotation a of the vector x to the vector z,. Right: counterclockwise rotation
a of the coordinate frame v to the coordinate frame wu.



In Figure 3.4, a vector z is rotated an angle o around the unit vector n. We denote the rotated
vector by x,. Suppose that x as expressed in the coordinate frame v is known (and denoted z) and

that we want to express z¥ in terms of V. « and n.
* )

Figure 3.4: Clockwise rotation of a vector x by an angle a around the unit vector n. The rotated vector
is denoted by z,. The vector z is decomposed in a component x| that is parallel to the axis n, and a
component x| that is orthogonal to it.



It can first be recognized that the vector x can
be decomposed into a component parallel to the axis n, denoted x|, and a component orthogonal to it,
denoted x |, as

¥ =z + . (3.10a)
Based on geometric reasoning we can conclude that
z) = (2 -n")n", (3.10b)

where - denotes the inner product. Similarly, 7 can be decomposed as

xy = (@) + (@) 1, (3.11a)

where
() = |, (3.11b)
(), =a{ cosa+ (zV x n¥)sina. (3.11c¢)

Hence, x] can be expressed in terms of xV as

xy, = (xV-n")n" + (¥ — (¥ -n")n") cosa + (¥ x n’) sin «

*

=z cosa+n'(x"-n’)(1—cosa)— (n¥ x z¥)sin . (3.12)
Denoting the rotated coordinate frame the u-frame and using the equivalence between z] and z" as
shown in Example 3.2, this implies that

' =axVcosa+n'(zV-nV)(1—cosa)— (n¥ x 2V)sina. (3.13)

This equation is commonly referred to as the rotation formula or Euler’s formula [135]. Note that the
combination of n and «, or n = na, is denoted as the rotation vector or the azxis-angle parameterization.



* Visualizing a rotation represented by an Euler
axis and angle.



Extension of Euler’s formula

A Euclidean vector such as (2, 3, 4) or (ay, @), a,) can be rewritten as
21+ 3j+4Kkoracitay)+a.k wherel, j, k are unit vectors
representing the three Cartesian axes. A rotation through an angle of &
around the axis defined by a unit vector

U= (Ug, Uy, U;) = Ui+ uyj + uk

can be represented by a quaternion. This can be done using an extension of
Euler's formula:

% (ugituyjtu k) 0 0

q=c=¢€ =cos§—|—(umi—|—uyj—|—uzk)sin§

ImA

Recall: Euler’s formula:

i . . /0605«’ 1 Re
e? =cos @ +isin @ \j




Inverse and Composition

9 (i 0 : : .0
q—l —e 2 (ugituyjtu.k) _ CcOS 5 — (le + uyj + uzk) sin 5

It follows that conjugation by the product of two quaternions is the composition of

conjugations by these quaternions: If p and q are unit quaternions, then rotation

(conjugation) by pq is

pai(pq)' = paiq 'p ' =p(qiq )p ',

which is the same as rotating (conjugating) by q and then by p. The scalar component
of the result is necessarily zero.



Euler Angle

Rotation can also be defined as a consecutive rotation around three axes in terms of so-called Fuler
angles. We use the convention (z,y,x) which first rotates an angle 1) around the z-axis, subsequently
an angle # around the y-axis and finally an angle ¢ around the x-axis. These angles are illustrated in
Figure 3.5, Assuming that the v-frame is rotated by (v, 6, ¢) with respect to the u-frame as illustrated
in this figure, the rotation matrix R" is given by

R™ = R"(e1, §)R™ (e2,0) R™ (e3, 1))

1 0 0 cosf 0 —sinf cosy siny 0
=10 cos¢p sing 0 1 0 —siny cosy 0
0 —sing cos¢o sinf 0 cosf 0 0 1
cos 0 cos cos # sin 1) —sin 6
= | sin¢sinf cosy — cos ¢psintyy sin¢sinfsiny + cospcosy singcosb |, (3.20)

cos ¢ sin 6 cos P + sin ¢psiny  cos ¢psinfsiny — sin g cosy cos ¢ cos
where we make use of the notation introduced in (3.17) and the following definition of the unit vectors

er=(1 00", e=(0 10", (3.21)

Figure 3.5: Definition of Euler angles as used in this work with left: rotation 1 around the z-axis, middle:
rotation # around the y-axis and right: rotation ¢ around the x-axis.



Pitch, roll, and yaw

The v, 0, ¢ angles are also often referred to as yaw (or heading), pitch and roll, respectively. Furthermore,
roll and pitch together are often referred to as inclination.



Gimbal Lock

Similar to the rotation vector, Euler angles parametrize orientation as a three-dimensional vector.
Euler angle representations are not unique descriptions of a rotation for two reasons. First, due to
wrapping of the Euler angles, the rotation (0,0,0) is for instance equal to (0,0, 27k) for any integer k.

Furthermore, setting # = 7 in (3.20), leads to

0 0 —1
R"Y = | sin¢costy — cos ¢psiny sin¢gsiny + cospcosyy 0
cos ¢ cos 1y + sin ¢psintyy  cos ¢ siny —singpcosy 0
0 0 —1
= [ sin(¢p — ) cos(p—1v) 0 |. (3.22)
cos(p —) —sin(¢p—¢) 0

Hence, only the rotation ¢ — ¢ can be observed. Because of this, for example the rotations (7, %, 0),

(0,5,—%5), (m, 5, %) are all three equivalent. This is called gimbal lock [31].



 We will analyze further using quaternions
next.



Exponential an skew symmetric matrix,
we get a rotation matrix



Recall:

Given a square matrix X € R™™",
the exponential of X is given by the absolute convergent power series

X - Xk
e :Z F
k=0



What is a rigid motion/transformation?

A rigid transformation is formally defined as a transformation that, when
acting on any vector v, produces a transformed vector T(v) of the form

Iv)=Rv+t

where R" = R (i.e., Ris an orthogonal transformation), and t is a vector
giving the translation of the origin.

A proper rigid transformation has, in addition,
det(R) = 1

which means that R does not produce a reflection, and hence it
represents a rotation (an orientation-preserving orthogonal
transformation). Indeed, when an orthogonal transformation matrix
produces a reflection, its determinant is —1.



Note: Rotation and Translation
do not commute
Inv)=Rv +t
* This can be viewed as first rotating the vector v
by using rotation matrix R, then translate by t.

 What if we first translate the vector v by t and
then do the rotation by R?



Key property of any rigid motion:
preserves the distance!

d(9(X),9(Y))* =d(X,Y)*.

dX, Y)Y =(Xi - V) + (X —¥B) +...+(X, - Y,)?
=(X-Y) - (X-Y).
For the Euclidean distance d and

a rigid transformation g:R"—R"



Claim: The tangent plane of the Lie
group SO(3) at the identity is the set
of skew-symmetric matrices.

Work out details with the students on

the board.

Even we are interested in n=3. All the

derivations can be extended to dim=n.
SO(n) ={Q e R™": Q' =Q~ !, det(Q) = 1}.

The algebra of skew-symmetric matrices is denoted by

so(n) = {S e R™": §' = —¢§)
so(n) is called the Lie algebra of the Lie group SO(n).



The set of rigid motions SE(n) also
form a Lie Group

SE(n) = {[3 ‘1‘] :Q €50(n), u e R”*l'}.

While SE (n) describes configurations, its Lie algebra se(n), defined by

se(n) = {[g X] :Seso(n),veR"*”},

* Note: Here we used the homogeneous
representation of rotation and translation.



Geometric aspect of the exponential
and logarithm

To any vector u = (uq, U, u3) € R> one can associate
the 3 x 3 skew-symmetric matrix

0 —U3z Uy
| —Up U 0 _

It is easy to see that, for every v € R>,
uUuxv=>,5,Vv,

where x stands for the cross product.



Now consider the following problem: given a unit vector u € R>
and an angle 6 € R, find the rotation matrix R that

rotates any vector through the angle 6 about an axis with direction u.

The matrix exponential gives the elegant solution:

R = e’

e Moreover, we have a closed formula for it:

e’ =1+ sinf Sy + (1 — cos) SZ.

* The above is the famous Rodrigues Formula.



Derivation of Rodrigues Formula

e Work out the details with the students.



 The power of Exp and Log of matrices!

Conversely, given R € SO(3) (with no negative eigenvalues)
consider the problem of finding the axis direction u and the

angle 6 of rotation. Using the matrix exponential,

we can formulate this problem as follows:
determine a unitary vector u and 6 €] — r, 7 [ such that

R = eV,
The matrix logarithm provides the simple answer
5460 = log(R),

or equivalently,

1
Su = ) log(R), whenever6 # 0.



A widely used formula for computing the logarithm of a 3 x 3 rotation matrix is

R' —R),

logR =
5 2sinf

where 6 satisfies 1 4+ 2 cos 6 = trace(R),0 # 0, —m < 0 < m.

When 6 = 0 one has the trivial case R = I and logR = 0.

* Note:



How to calculate the angle?

* Taking the norm both sides of

Su = 5 10g(R),
* We get

I Sull'16] = [l log(R) I,

and, since || Sy || = 1, the angle of rotation is related with the norm of log(R) by

0] = |l log(R) .



Summarize

* This means that the direction of the rotation
axis is given by the logarithm of the matrix
associated with u.



Thisrelationship between skew-symmetricand rotation matrices by
means of exponentials and logarithmsare the key to explain the
importance of these matrix functionsin rigid motions and robotics. There
are many other geometric problemsinvolving exponentials and logarithms
of matrices. For example, my student Tum and | was working on the design

of trajectories for UAVs in an indoor environments (meaningassuming
without GPS).



Claim: Given a unit quaternion, we
can define a rotation.



What is the matrix for Rq?

* Ans: Itis the matrix representation of R,
* How to find it?
* Ans: Let R,acts on the basis {1, i, j, k}



Here s =

1-2s(¢2 +q7) 2s(qiqj — arar)  25(qigr + ¢iqr)

2s(q;q; + qrqr)
i 2s(qiqx — qjqr)

1-2s(q; +q;) 2s(gjar — gigr)
2s(qjqr +qigr) 1—2s(q] +47)

|€I||_2 and if g is a unit quaternion, s = 1.



Recovering the axis-angle representation

The axis a and angle 6 corresponding to a quaternion q = g, + ¢;i + g;j + gqrk
can be extracted via:

(4,95, )
¢ﬁ+ﬁ+ﬁ
0 = 2a1:a112(\/qi2 +q; + q,%,,qr),

where atan2 is the two-argument arctangent. Care should be taken when the

(a'azaa'yaa’z) —

quaternion approaches a real quaternion, since due to degeneracy the axis of an
identity rotation is not well-defined.



Differentiation with respect to the
rotation quaternion

The rotated quaternion p'=q p q* needs to be differentiated with
respect to the rotating quaternion q , when the rotation is estimated from
numerical optimization. The estimation of rotation angle is an essential
procedure in 3D object registration or camera calibration. The derivative
can be represented using the Matrix Calculus notation.

op’ [op' oOp' Op' Op’
dq | 0q Oq, Og, 84

= [pa — (Pq)*, (Pqi)" — pai, (Paj)* — paj, (Pak)” — pgk].



Types of Matrix Derivatives

Types Scalar Vector Matrix
Oy oy 0Y

Scalar — —
ox ox ox
Vector @ B_y
Ox ox
Matrix ﬁ
0X

Will be covered in Math 173, Advanced linear Algebra.



We also can add a scalar to a vector
and find inverse of a vector!

a+bi+ci+dk =a+v.




Now we can multiply two vectorsin R3and in R*!
First define it in R3
by viewing them as pure imaginary quaternions

We can express quaternion multiplication in the modern language of vector cross and
dot products (which were actually inspired by the quaternions in the first place [©)).
When multiplying the vector/imaginary parts, in place of the rules

i = j2 = k? = ijk = —1 we have the quaternion multiplication rule:

W=V X W— V- W,
where:

e VW is the resulting quaternion,

l

—

e U X W is vector cross product (a vector),

l

—

e ¥ - W is vector scalar product (a scalar).



Quaternion multiplication is noncommutative (because of the
cross product, which anti-commutes), while scalar—scalar and
scalar—vector multiplications commute. From these rules it follows
immediately that (see details):

—

(s+v)(t+w) = (st—v-w)+ (sw+tv+ v x w).



Quaternions are extension of complex nhumbers

The complex numbers can be defined by introducing an abstract
symbol i which satisfies the usual rules of algebra and additionally
the rule i% = —1. This is sufficient to reproduce all of the rules of

complex number arithmetic: for example:

(a + bi)(c+ di) = ac + adi + bic + bidi
— ac + adl + bci + bdil® = (ac — bd) + (bc + ad)i.

Multiply two quaternions:

(a+bi+cj+dk)(e+ fi+ gj + hk) =
(ae —bf —cg —dh) + (af + be + ch — dg)i+ (ag — bh + ce + df)j + (ah + bg — cf + de)k.

i=j’=Kk?=ijk=-1



Notations for using multiple frames
* Pay attention to the subscripts!

.
=0 @ @ ) = (20) . qeRY gl =1
v

A rotation can be defined using unit quaternions as
=WV O O (™)
where - denotes the quaternion conjugate, defined as
“=(w0 —a) .
and v denotes the quaternion representation of xV as

7V = (O (xv)T)T

caution: —q describes the same orientation.



* Be able to change quaternion multiplication to
matrix/vector multiplication fluently.

Poqo Pov * qy L R
@ - — E— ’
P 1 (pOQ’U | qoPv | Po X Q’U> P 4P

where

pL 7y <p0 —pI ) qR 7y (QO —QI > .
Pv Dols + [pux])’ @  q0Z3 — |Gy X]



- v L vu\R —v
= (¢") (¢"") T

:<qO —q) )(QO ™ ><0>
¢ Iz +[qwx]) \—qw qoZs+ [qux]) \z¥

( » ) ( )
OSX 1 QU qv | QOIS | QQO [qv X] | [QU X] £ .
Compare WItII

R™(n¥,a) = I3 — sina[n’ x| + (1 — cos a)[n¥ x]?. (3.17)

it can be recognized that if we choose

™ (n", 0) ( 0s 3 ) |

—mVain &
’n,Sll’l2



the two rotation formulations are equivalent since

[Eu o 1 0]_)(3 0
- \O3x1 I3 —2cos § sin %[nVX]—I—QSiH2%[nVX]2 xV

N (031><1 73 — sin oz[n"x](jrlﬁ — cosa) [anF) (;SV) ' (3.31)

Here, we made use of standard trigonometric relations and the fact that since [|[n¥]js = 1, n¥ (n¥)' =

T3 + [n¥x]2. Hence, it can be concluded that ¢"¥ can be expressed in terms of o and n" as in (3.30).




Equivalently, ¢"V(n",a) can also be written as

(0% ,0) = exp(—37) = 3 & (~37)" 3:32)
k=0
where
@)’ =1 0 0 0), (3.33a)
(%) = (o (n")T)T, (3.33b)
(@) =" @i = (—[n"[§ 0sx1) = (~1 0sx1)', (3.33¢)
@) =(0 - (nV)T)T, (3.33d)

This leads to

= ( o5 2 a) . (3.34)
—Nn Slng

Note the similarity to (3.18) and (3.19). The reason why both rotation matrices and unit quaternions
can be described in terms of an exponential of a rotation vector will be discussed in §3.3.1,




Cautions

Some exiting estimation algorithms typically assume that the
unknown states and parameters arerepresentedin Euclidean space.
— Forinstance, theyassumethat the subtraction of two orientations gives

informationaboutthe differencein orientationand that the addition of
two orientationsis again a valid orientation.

If you work in a parameterizingspace, you still need to be careful.

— Forinstance, duetowrappingand gimbal lock, subtraction of Euler
angles and rotationvectors canresultin large numbers even in cases
when the rotations are similar.

Subtraction of unit quaternions and rotation matrices do not in
generalresultin a valid rotation.

The equality constraints on the norm of unit quaternions and on the
determinantand the orthogonally of rotation matrices are typically
hard to includein the estimation algorithms.

We will discuss some methods later to representorientationin
estimation algorithms that deals with the issues described above.

— frequently used correct representations and algorithms

we will also discuss some alternative methods to parametrize orientation for
estimation purposes.



dcC C(t + 6t) + C(t)

B,
dt 650 ot
Since C'(t 4 dt) also represents a rotation, we choose to write is as
C(t+0t)C(t)A(t)

for some rotation matrix A(t).
Recall that rotations about the x, y, and z axes can be written respectively as

1 0 0 cos# 0 —sinf cosp sinp 0
R,= 10 cos¢ sing R,=1 0 1 0 R,=|—sinp cosep 0
0 —sing coso sinf 0 cos6 0 0 1



R = R,R,R.

for some ¢, 6, and ¢, which are then known as Tait—Bryan angles. Multiplying R out yields

cos ¢ cos 6 sin ¢ cos —sin @
sin¢gsinf cosp —sinpcos¢  sin¢sinpsinf 4+ cospcosy  sin ¢ cos
sin ¢sin ¢ + sinfcospcos —sin@cos e + sinpsinf cos¢ cos ¢ cos

If ¢, 6, and ¢ approach zero, we can make a small angle approximation yielding

1 v —0
R=R,RyR.,= |- 1 ¢
6 —¢ 1

Since 4t is small, we can write
A(t) =14 0¥(t)

where
0 —dp 66
—00 0o 1
Thus, substituting into our original forward-difference yields
dC . C)I+6Y(t)) —C(t)
— = lim
dt 5t—0 ot
. dv
= ) Jim 4

= C(H)1)



where

0 —wa(t)  wyl?)
Q(t) = | w(t) 0 —wy (1)
—wy(t)  wa(t) 0

This is the skew-symmetric form of the angular velocity vector w(¢), which we can acquire periodi-
cally from the gyroscope. Thus, we are interested in solving the differential equation

This has the solution



Correct ways we use

Recall the set of rotations is a Lie group, so there
exists an exponential map from a corresponding
Lie algebra.

We use exponential map from so(3) to SO(3) and
logarithm from SO(3) to so(3).

We represent orientations on SO(3) using unit
guaternions or rotation matrices,

We represent orientation deviations using
rotation vectors on R3 (Key! This mimic how we

deal with rotation in R2 using Euler angle.)



Specifically,

we encode an orientation ¢ in terms of a linearization point parametrized either as a unit quaternion
¢ or as a rotation matrix R?b and an orientation deviation using a rotation vector 7;. Assuming that
the orientation deviation is expressed in the body frame b,"

—b ~
@ =gt oep (), R =RPexp(nPx]), (3.35)

where analogously to (3.34) and (3.19),

o cos|nll
exp(1) = (%Sin“ﬂb ; (3.36a)

exp((x]) = Zs + sin (lnll2) [y x] + (1 — eos () [ <] (3.36b)



Gyroscope measurement models
(Later)

As discussed in §2.2, the gyroscope measures the angular velocity w}ob at each time instance t. However,
as shown in §2.4, its measurements are corrupted by a slowly time-varying bias d,, ; and noise e, ;. Hence,
the gyroscope measurement model is given by

Yw,t = Wibb,t + 6B,t + eg,t' (3.41)



