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SA3 is a double cover of SO(3)

e Last time: Very pair of unit quaternions q & -q
represents a rotation.

* The set of unit quaternions form a sphere S*3
in R4,

 We can show that S*3 is a double cover of
SO(3).



How does S”3 look like?

By identifslantipodal points

M = SO(3) = RP?



Recall: There are a lot of circles on S2




There are also a lots of circles on S3

Stereographic projection of the hypersphere's parallels
(red), meridians (blue) and hypermeridians (green).
Because this projection is conformal, the curves intersect
each other orthogonally (in the yellow points) as in 4D. All
curves are circles: the curves that intersect <0,0,0,1) have
infinite radius (= straight line). In this picture, the whole
3D space maps the surface of the hypersphere, whereas
in the previous picturelc/arification needed| the 3D space
contained the shadow of the bulk hypersphere.




Hopf Fibration

* https://www.youtube.com/watch?
v=AKotMPGFJYk



Rigid Body Kinematics

* https://www.seas.upenn.edu/~meam620/
slides/kinematicsl.pdf



The important subgroups of SE(3)

Subgroup Notation Definition Significance
The group of | SOQ3) The set of all proper orthogonal All spherical displacements. Or
rotations in matrices. the set of all displacements
three 33 T r that can be generated by a
dimensions SO(3) = {R |[RER™, R'R=RR" - I} spherical joint (S-pair).
Special SEQ) The set of all 3x3 matrices with the | All planar displacements. Or
Euclidean structure: the set of displacements that
group in two ] ) can be generated by a planar
dimensions cos® sin® r, pair (E-pair).
-sin® cosO 7,
0 0 1
where 0, r,, and r, are real numbers.
The group of | SO(2) The set of all 2x2 proper orthogonal | All rotations in the plane, or the
rotations in two matrices. They have the structure: | set of all displacements that
dimensions can be generated by a single

cosB sinﬁ]

—sin® cosO

where 0 is a real number.

revolute joint (R-pair).




The important subgroups of SE(3)

(continue)

The group of |  7(n) The set of all nx1 real vectors with All translations in 7
translations in vector addition as the binary dimensions. » = 2 mdicates
n dimensions. operation. planar, n = 3 indicates spatial
displacements.
The group of 1(1) The set of all real numbers with All translations parallel to one
translations in addition as the binary operation. axis, or the set of all
one dimension. displacements that can be
generated by a single prismatic
joint (P-pair).

The group of [SO(2)x7(1)| The Cartesian product of SO(2) and |  All rotations in the plane and
cylindrical (1) translations along an axis
displacements perpendicular to the plane, or

the set of all displacements
that can be generated by a
cylindrical joint (C-pair).
The group of | H(1) A one-parameter subgroup of SE(3) | All displacements that can be
SCTEW generated by a helical joint (H-
displacements pair).




The Group of Rotations

A rigid body B is said to rotate relative to another rigid body A4, when a point of B is always
fixed in {4}. Attach the frame {B} so that its origin O’ is at the fixed point. The vector “r’ is

equal to zero in the homogeneous transformation in Equation ( 1 ).

The set of all such displacements, also called spherical displacements, can be easily seen to

form a subgroup of SE(3).



If we compose two rotations, “Az and “Ac, the product is given by:

B |
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Notice that only the 3x3 submatrix of the homogeneous transformation matrix plays a role in
describing rotations.  Further, the binary operation of multiplying 4x4 homogoneous
transformation matrices reduces to the binary operation of multiplying the corresponding 3x3
submatrices. Thus, we can simply use 3x3 rotation matrices to represent spherical

displacements. This subgroup, is called the special orthogonal group in three dimensions, or
simply SO(3):

SO(3) = {R ERER3"3, RIR =RRT = 1}

(4)



Locally exponential down to form data
manifold

* Suppose we have data points in R*n and
clustered in different areas. In each area find a
center c of the data points and view them as a
vectors in R*n. Use exponential map to mape
this tangent space at ¢ to form a manifold.

* Cover the data using those areas and then then
exponential down all of them.

* The collections of those exponential down curved
pieces could form a manifold?



Decompose a Rotation to 3 Successive Rotations

It is well known that any rotation can be decomposed into three finite successive rotations,
each about a different axis than the preceding rotation. The three rotation angles, called Euler

angles, completely describe the given rotation. The basic idea is as follows. If we consider any
two reference frames {4} and {B}, and the rotation matrix “Rz, Wwe can construct two

intermediate reference frames {M} and {N}, so that

AR p=1R ) x YRy x VR
where
1. The rotation from {4} to {M} is a rotation about the x axis (of {4}) through 1;
2. The rotation from {M} to {N}is a rotation about the y axis (of {M}) through ¢; and

3. The rotation from {N} to {B}is arotation about the z axis (of {V}) through 0.

(Ri11 R R3] [1 0 0 | [cosp O singp| [cos® —-sin® O]
ARB= Ry1 Ry Ry3(=[0 cosyp =—-smy|x| O 1 0 |x|smB cos® O
R31 Ry R33| [0 sy cosyp | |-sing O cos¢p| [ O 0 1




Thus any rotation can be viewed as a composition of these three elemental rotations except for
rotations at which the Euler angle representation is singular!. This in turn means all rotations in an
open neighborhood in SO(3) can be described by three real numbers (coordinates). With a little
work it can be shown that there is a 1-1, continuous map from SO(3) onto an open set in R’.

This gives SO(3) the structure of a three-dimensional differentiable manifold, and therefore a Lie
group.



The rotations in the plane, or more precisely rotations about axes that are perpendicular to a
plane, form a subgroup of SO(3), and therefore of SE(3). To see this, consider the canonical
form of this set of rotations, the rotations about the z axis. In other words, connect the rigid
bodies A and B with a revolute joint whose axis is along the z axis in Figure 1. The

homogeneous transformation matrix has the form:

" cosO smB 0 O

4 —sinB® cos® 0 O
Ap =

0 0 1 0

0 0 0 1

where 0 is the angle of rotation. If we compose two such rotations, “Az and ®Ac, through 6,

and 0, respectively, the product is given by:
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All matrices in this subgroup are the same periodic function of one real variable, 0, given by:

'cos@ -sm0 0]
R(E)) =|smBO cos® O
0 0 1

This subgroup is called SO(2). Further, since R(0;) x R(0,) = R(0; + 6,), we can think of the
subgroup as being locally isomorphic? to R' with the binary operation being addition.



The group of translations

A nigid body B is said to translate relative to another rigid body A4, if we can attach reference
frames to 4 and to B that are always parallel. The rotation matrix “Rj equals the identity in the

homogeneous transformation in Equation ( 1).

The set of all such homogeneous transformation matrices is the group of translations in three

dimensions and is denoted by 713).



If we compose two translations, “A and A, the product is given by:

B | A 0! | B 0//
Ay Bp Isy3 | 1 I3 | °r
BX AC = [=77" =" X |===== r——T-
01,3 1 1 01,31 1
| ' "
I3 | 4.0 B O
_— ] e —— l_ ———————————
01x3 ! 1

Notice that only the 3x1 vector part of the homogeneous transformation matrix plays a role in
describing translations. Thus we can think of a element of 7(3) as simply a 3x1 vector, “r°.
Since the composition of two translations 1s captured by simply adding the two corresponding
3x1 vectors, “r° and °r’ , we can define the subgroup, T(3), as the real vector space R° with

the binary operation being vector addition.



Similarly, we can describe the two subgroups of 7(3), 7(1) and 7(2), the group of
translations in one and two dimensions respectively. Because they are subgroups of 71(3), they
are also subgroups of 7(3). It is worth noting that 7(1) consists of all translations along an axis

and this is exactly the set of displacements that can be generated by connecting 4 and B with a

single prismatic joint.

A prismatic joint provides a linear sliding
movement between two bodies, and is
often called a slider, as in the slider-crank
‘ linkage. A prismatic pair is also called as
More images sliding pair. A prismatic joint can be
formed with a polygonal cross-section to

Prismatic joint < resist rotation. Wikipedia




The special Euclidean group
in two dimensions

If we consider all rotations and translations in the plane, we get the set of all displacements
that are studied in planar kinematics. These are also the displacements generated by the
Ebene-pair, the planar E-pair. If we let the rigid body B translate along the x and y axis and
rotate about the z axis relative to the frame {4}, we get the canonical set of homogeneous

transformation matrices of the form:

cos® sin® 0 Ar)?’ -
A _sin® cos® 0 4 ryol
Ap =
0 0 1 0
0 0 O 1

where 6 is the angle of rotation, and 4 er " and 479’

y are the two components of translation of

the origin O’. If we compose two such displacements, “Az and *A, the product is given by:



0
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Because the set of matrices can be continuously parameterized by three variables, 0, 4 er ’

and 4 r)f) ' , SE(2) 1s a differentiable, three-dimensional manifold.
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The one-parameter subgroup in SE(3)

The group of cylindrical motions is the group of motions admitted by a cylindrical pair, or a C-
pair. If we let the rigid body B translate along and rotate about the z axis relative to the frame

{4}, we get the canonical set of homogeneous transformation matrices of the form:

" cosO sinB 0 O
4 —-sinB® cos® 0 O
Apg =
0 0 1 %
0 0 0 1

where 0 is the angle of rotation and £ is the translation. The set of such matrices is continuously
parameterized by these two variables. Thus, this subgroup is a two-dimensional Lie group. In
fact, 1t 1s nothing but the Cartesian product SO(2) x 7(1). Physically this means we can realize
the cylindrical pair by arranging a revolute joint and a prismatic joint in series (in any order)

along the same axis.



A one-dimensional subgroup is obtained by coupling the translation and the rotation so that

they are proportional. The canonical homogeneous transformation matrix is of the form:

" cos® sin0

Ay _ —sinB® cosO
B=1 0 0
0 0

0 07
0 O
1 56
0 1

where /4 is a scalar constant called the pitch. Because the displacement involves a rotation and

a co-axial translation that s linearly coupled to the rotation, this displacement is called a screw

displacement. It is exactly the displacement generated by a kelical pair, or the H-pair.
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The set of all screw displacements about the z-axis can be described by a matrix function A(0),
with the property A(0;) x A(B;) = A(0; + 0,). Thus this one-dimensional subgroup is
isomorphic to the set R' with the binary operation of addition. Such one-dimensional subgroups

Z!

POSITION AT TIME ¢




Velocity analysis

Work out details with students on the board



Lie Algebra of the Lie group SO(3)

e Work out details with the students on the
board.



In general: Definition of Lie Algebra

a Lie algebra is a vector space g with an operation g x g — g; (X,Y) — [X,Y] called a Lie
bracket, such that:
(a) Antisymmetry: [Y, X| = —[X,Y]
(b) Bilinearity: for all a,b € F and for all XY, Z € g
(i) [aX +bY,Z] = a|X, Z] + b]Y, Z]
(ii)) [X,aY +b0Z] =a[X,Y]| +b[X, Z].
(c) The Jacobi Identity: forall X,Y,Z € g, |X,[Y, Z]|+|Y,[Z, X]|+|Z,[X,Y]] = 0.



What would happen if we use unit
guaternions to represent rotations?



Get used to see things from different
points of view, especially for rotations

Example 3.2 (Rotation of a coordinate frame and rotation of a vector) Consider the 2D ex-
ample in Figure 3.3, where on the left, a vector x is rotated clockwise by an angle o to x.. This is

equivalent to (on the right) rotating the coordinate frame v counterclockwise by an angle «. Note that
xy =z

i T
% -
«
v

v
u

2\ 2

A 4

Figure 3.3: Left: clockwise rotation a of the vector x to the vector z,. Right: counterclockwise rotation
a of the coordinate frame v to the coordinate frame wu.



In Figure 3.4, a vector x is rotated an angle o around the unit vector n. We denote the rotated
vector by x,. Suppose that z as expressed in the coordinate frame v is known (and denoted zV) and

that we want to express x) in terms of =V, a and n.

Figure 3.4: Clockwise rotation of a vector z by an angle o around the unit vector n. The rotated vector
is denoted by z,. The vector x is decomposed in a component x| that is parallel to the axis n, and a
component x| that is orthogonal to it.



It can first be recognized that the vector x can
be decomposed into a component parallel to the axis n, denoted x|, and a component orthogonal to it,
denoted x|, as

zV =z + 2. (3.10a)
Based on geometric reasoning we can conclude that

z) = (z¥V-n")n", (3.10b)

where - denotes the inner product. Similarly, 7 can be decomposed as

xy = (@) + (@) L, (3.11a)

where
(@) = |, (3.11b)
(), =a{ cosa+ (zV x n¥)sina. (3.11c)

Hence, x] can be expressed in terms of xV as

xy, = (xV-n")n" + (¥ — (¥ -n")n")cosa + (¥ x n’) sin «
=z cosa+n'(x"-n’)(1—cosa)— (n" x z¥)sina. (3.12)
Denoting the rotated coordinate frame the u-frame and using the equivalence between x} and z" as

shown in Example 3.2, this implies that
' =zVcosa+n'(x¥ -n')(1—cosa)— (nY x z¥)sina. (3.13)

This equation is commonly referred to as the rotation formula or Euler’s formula [135]. Note that the
combination of n and «, or n = na, is denoted as the rotation vector or the azxis-angle parameterization.



* Visualizing a rotation represented by an Euler
axis and angle.



Extension of Euler’s formula

A Euclidean vector such as (2, 3, 4) or (ay, a,, a,) can be rewritten as
21+ 3] +4Kkorayi+a,j+ak wherel, j, k are unit vectors
representing the three Cartesian axes. A rotation through an angle of &
around the axis defined by a unit vector

U= (Ug, Uy, Uy) = Ui+ uy,j+ uk

can be represented by a quaternion. This can be done using an extension of
Euler's formula:

g (ugituyj+u k) 0 0

q=c¢ zcos§+(uxi+uyj—|—uzk)sin§

Im 4

Recall: Euler’s formula:

e? =cos @+isin @ \J




Inverse and Composition

9 (i 0 : : .0
ql=ec> (uoituyjtusk) _ 5 (ugpi+ uyj + u k) sin 5

It follows that conjugation by the product of two quaternions is the composition of

conjugations by these quaternions: If p and q are unit quaternions, then rotation

(conjugation) by pq is

pai(pq) ' = paiq 'p ' =p(qiq )p ',

which is the same as rotating (conjugating) by q and then by p. The scalar component
of the result is necessarily zero.



Euler Angle

Rotation can also be defined as a consecutive rotation around three axes in terms of so-called Fuler
angles. We use the convention (z,y,x) which first rotates an angle ¢ around the z-axis, subsequently
an angle 6 around the y-axis and finally an angle ¢ around the z-axis. These angles are illustrated in
Figure ]ﬁ Assuming that the v-frame is rotated by (1,0, ¢) with respect to the u-frame as illustrated
in this figure, the rotation matrix R"V is given by

R™ = R"(e1, $)R™ (e2,0) R™ (e3, 1))

1 0 0 cosf 0 —sinf cosy siny 0
=0 cos¢p sing 0 1 0 —sinvy cosy 0
0 —sin¢ cos¢ sinf 0 cosf 0 0 1
cos 6 cos 1) cos f sin Y —sinf
= | sin¢sinf cosy — cos ¢psintyy sin¢sinfsiny + cospcosy singcosh |, (3.20)

cos ¢ sin 6 cos Y + sin ¢psiny  cos ¢psinfsiny — sin g cosy cos ¢ cos

where we make use of the notation introduced in (3.17) and the following definition of the unit vectors

er=(1 0 0, e=0 10", e=>001)". (3.21)

Figure 3.5: Definition of Euler angles as used in this work with left: rotation 1) around the z-axis, middle:
rotation # around the y-axis and right: rotation ¢ around the z-axis.



Pitch, roll, and yaw

The 1, 0, ¢ angles are also often referred to as yaw (or heading), pitch and roll, respectively. Furthermore,
roll and pitch together are often referred to as inclination.



Gimbal Lock

Similar to the rotation vector, Euler angles parametrize orientation as a three-dimensional vector.
Euler angle representations are not unique descriptions of a rotation for two reasons. First, due to
wrapping of the Euler angles, the rotation (0,0,0) is for instance equal to (0,0, 27k) for any integer k.

s

Furthermore, setting 6 = 7 in (3.20), leads to

0 0 —1
R"™ = | sin¢costy —cos¢psiny sin¢siny + cospcosy 0
cos ¢ cos 1y + sin ¢psintyy  cos ¢ siny —singpcosy 0
0 0 —1
= [ sin(¢p — ) cos(p—1v) 0 |. (3.22)
cos(¢ — ) —sin(¢—4) 0

Hence, only the rotation ¢ — v can be observed. Because of this, for example the rotations (7, 5,0),

(0,5,—%), (m, 5, %) are all three equivalent. This is called gimbal lock [31].



 We will analyze further using quaternions
next.



Exponential an skew symmetric
matrix, we get a rotation matrix



Recall:

Given a square matrix X € R™™",
the exponential of X is given by the absolute convergent power series

X - Xk
e :Z F
k=0



What is a rigid motion/transformation?

A rigid transformation is formally defined as a transformation that, when
acting on any vector v, produces a transformed vector T(v) of the form

TIv)=Rv+t

where R" = R~ (i.e., Ris an orthogonal transformation), and t is a vector
giving the translation of the origin.

A proper rigid transformation has, in addition,
det(R) =1

which means that R does not produce a reflection, and hence it
represents a rotation (an orientation-preserving orthogonal
transformation). Indeed, when an orthogonal transformation matrix
produces a reflection, its determinant is —1.



Note: Rotation and Translation

do not commute
Inv)=Rv+t
* This can be viewed as first rotating the vector v
by using rotation matrix R, then translate by t.

 What if we first translate the vector v by t and
then do the rotation by R?



Key property of any rigid motion:
preserves the distance!

d(9(X),9(Y))* =d(X,Y)?.

dX,Y)? = (X1 —N)* + (X2 - Ya)* +... 4+ (X, - V,,)
=(X-Y) - (X-Y).
For the Euclidean distance d and
a rigid transformation g:R"—R"



Claim: The tangent plane of the Lie
group SO(3) at the identity is the set
of skew-symmetric matrices.

Work out details with the students on
the board.
Even we are interested in n=3. All the

derivations can be extended to dim=n.
SO(n) ={Q e R™": Q' =Q!, det(Q) = 1}.
The algebra of skew-symmetric matrices is denoted by
so(n) = {S e R™": §' = —§)
so(n) is called the Lie algebra of the Lie group SO(n).



The set of rigid motions SE(n) also
form a Lie Group

SE(n) = {[8 l]l] : Q € SO(n), u € R } .

While SE (n) describes configurations, its Lie algebra se(n), defined by

se(n) = {[(S) :)’] : S € so(n), ve R }

 Note: Here we used the homogeneous
representation of rotation and translation.



Geometric aspect of the exponential
and logarithm

To any vector u = (uq, u», u3) € R> one can associate
the 3 x 3 skew-symmetric matrix

~ 0 —U3 Uy |
Uy Uy 0 _

It is easy to see that, for everyv € R>,
Uuxv=3_3,v,

where x stands for the cross product.



Now consider the following problem: given a unit vector u € R3
and an angle & € R, find the rotation matrix R that

rotates any vector through the angle 6 about an axis with direction u.

The matrix exponential gives the elegant solution:

R = eSu9

* Moreover, we have a closed formula for it:

e’ =1 +45sinf S, + (1 — cosh)S?.

 The above is the famous Rodrigues Formula.



Derivation of Rodrigues Formula

e Work out the details with the students.



Derivation of Rodrigues’ Rotation
Formula

In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde
Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of
rotation. By extension, this can be used to transform all three basis vectors to compute a rotation
matrix in SO(3), the group of all rotation matrices, from an axis—angle representation. In other
words, the Rodrigues' formula provides an algorithm to compute the exponential map from so(3),
the Lie algebra of SO(3), to SO(3) without actually computing the full matrix exponential.



Key idea: Only rotate the Perpendicular part

Let k be a unit vector defining a rotation
axis, and let v be any vector to rotate about
k by angle @ (right hand rule, anticlockwise
in the figure).

Using the dot and cross products, the vector
v can be decomposed into components
parallel and perpendicular to the axis Kk,

V=V t+VL,

where the component parallel to K is

VH = (V . k)k

called the vector projection of v on Kk, and
the component perpendicular to K is

Rodrigues' rotation formula rotates v by an angle =~
vi=v-v=v—(k-v)k=-kx (kxv) 6 around vector k by decomposing it into its
components parallel and perpendicular to &, and

called the vector rejection of v from k. : |
rotating only the perpendicular component.



V=Vt

V= k(kV) kk(kxv)(l
v, = — kx(kxv) = v - k(k-v) N

'-; k'V

Vector geometry of Rodrigues' rotation formula, as wellas =
the decomposition into parallel and perpendicular components.



The vector Kk X v can be viewed as a copy of v, rotated anticlockwise by 90° about Kk, so
their magnitudes are equal but directions are perpendicular. Likewise the vector k x (k X v)
a copy of v rotated anticlockwise through 180° about k, so that k X (k X v) and v, are
equal in magnitude but in opposite directions (i.e. they are negatives of each other, hence
the minus sign). Expanding the vector triple product establishes the connection between the
parallel and perpendicular components, for reference the formula is
ax(bxc)=(a-c)b—(a- b)cgiven any three vectors a, b, c.

The component parallel to the axis will not change magnitude nor direction under the
rotation,

V||rot — V|| 9

only the perpendicular component will change direction but retain its magnitude, according
to

|Vlrot| = |VL| y
Vit =C0sOv, +sinbfk x v, ,



and since k and v, are parallel, their cross product is zero k X v, = 0, so that
kxv, =kx (V—v”) =kxv-kxv,=kxv

and it follows
Vit =Cosfv, +sinfk x v.

This rotation is correct since the vectors v and k X v have the same length, and k X v is
v, rotated anticlockwise through 90° about k. An appropriate scaling of v, and k X v using
the trigonometric functions sine and cosine gives the rotated perpendicular component. The
form of the rotated component is similar to the radial vector in 2D planar polar coordinates
(7, 0) in the Cartesian basis

r = rcosfe, + rsinfe, ,
where ¢,, €, are unit vectors in their indicated directions.
Now the full rotated vector is

Viot = V||r01: + Vrot ’



Now the full rotated vector is
Vrot = V||rot + V1rot s
By substituting the definitions of v, and v ., in the equation results in

Vit = V| +cosfv, +sinfk x v
=V —|—cos€(v—v||) +sinfk x v
=cosfv+ (1 —cosf)v +sinfk x v
=cosfv+ (1 —cosf)(k-v)k+sinfk x v



Moreover, since K is a unit vector, K has unit 2-norm. The previous rotation formula in
matrix language is therefore

Vit =V + (sin®)Kv + (1 — cos )K?*v, ||K]|.=1.

Note the coefficient of the leading term is now 1, in this notation: see the Lie-Group
discussion below.

Factorizing the v allows the compact expression
Vrot — RV

where

R =1+ (sinf)K + (1 — cos§)K?

is the rotation matrix through an angle 6 counterclockwise about the axis k, and I the 3 x 3
identity matrix. This matrix R is an element of the rotation group SO(3) of R3, and K is an
element of the Lie algebra so(3) generating that Lie group (note that K is skew-symmetric,
which characterizes s0(3)).



In terms of the matrix exponential,
R = exp(fK).

To see that the last identity holds, one notes that
R(OR(4) = R(9+¢), R(0) =1,

characteristic of a one-parameter subgroup, i.e. exponential, and that the formulas match
for infinitesimal 6.

For an alternative derivation based on this exponential relationship, see exponential map
from so(3) to SO(3). For the inverse mapping, see log map from SO(3) to so(3).

Note that the Hodge dual of the rotation R. is just R* = — sin(6)k which allows the
extraction of both the axis of rotation and the sine of the angle of the rotation from the
rotation itself, with the usual ambiguity:

sin(d) = o|R*|
k= —oR"/|R"|

where 0 = £1. The above simple expression results from the fact that the Hodge dual of I
and K? are zero, and K* = —k.



Representing v and kK X v as column matrices, the cross product can be expressed as a

matrix product

[ (k x V),
(k x v),

(kX V),

i kyvz - kzvy |

kz'vw _ km VU,

| kavy — kyvy |

Letting K denote the "cross-product matrix" for the unit vector K,

0
K=| Lk,
_ky

—k, K,
0 o ka: ’
ke 0 |

the matrix equation is, symbolically,

Kv=kxv

Matrix
Rotation

for any vector v. (In fact, K is the unique matrix with this property. It has eigenvalues 0 and

+j).

Iterating the cross product on the right is equivalent to multiplying by the cross product
matrix on the left, in particular

K(Kv) =K’v=kx (k xv).



Exponential map from s0(3) to SO(3)

The exponential map effects a transformation from the axis-angle representation of rotations to
rotation matrices,

exp: s0(3) — SO(3).

Essentially, by using a Taylor expansion one derives a closed-form relation between these two
representations. Given a unit vector ® € s0(3) = R3 representing the unit rotation axis, and an
angle, @ € R, an equivalent rotation matrix R is given as follows, where K is the cross product
matrix of @, that is, Kv = @ x v for all vectors v € R3,

o0

R =

_ 1 2 1 3
k' = I+ 0K + —-(0K)? + - (PK)

L—nN



Lie-Algebraic derivation
of Rodrigues’ Rotation Formula

Because K is skew-symmetric, and the sum of the squares of its above-diagonal entries is 1, the
characteristic polynomial P(¢) of K is P(f) = det(K — fI) = —(£ + ). Since, by the Cayley—
Hamilton theorem, P(K) = 0, this implies that

K’=-K.
Asaresult K*=-K2 K=K K’ =K?2 K' =K.

This cyclic pattern continues indefinitely, and so all higher powers of K can be expressed in terms
of K and K?. Thus, from the above equation, it follows that

0 6 6> 6+ 6° 2
R:I+(0———|——.—~~)K+<§—Z+E—“'>K :
that is,

R=1+ (sin®)K + (1 — cos)K*.

This is a Lie-algebraic derivation, in contrast to the geometric one in the article Rodrigues' rotation
formula.l]



Log map from SO(3) to s0(3)

Let K continue to denote the 3 x 3 matrix that effects the cross product with the rotation axis :
K(v) = ® % v for all vectors v in what follows.
To retrieve the axis—angle representation of a rotation matrix, calculate the angle of rotation from
the trace of the rotation matrix

Tr(R) — 1
2

6 = arccos(

and then use that to find the normalized axis,

-R(?” 2) o R(27 3) |
R(1,3) — R(3,1)

-R(27 1) T R(17 2) N

1
~ 2siné

W




Note also that the Matrix logarithm of the rotation matrix R is
0 if0=0

log R = 9 (R—RT) if0#0andf € (—m, )
2 sin 6

An exception occurs when R has eigenvalues equal to —1. In this case, the log is not unique.

However, even in the case where 6 = 1t the Frobenius norm of the log is

Ilog(R)[lr = v/2[6].



Logarithm of a Matrix

The exponential of a matrix A is defined by

o0 n
6AE

e
n—0 n.

Given a matrix B, another matrix A is said to be a matrix logarithm of B if el = B. Because the

exponential function is not one-to-one for complex numbers (e.g. e™ = e>™ = —1), numbers

can have multiple complex logarithms, and as a consequence of this, some matrices may have
more than one logarithm, as explained below.

If Bis sufficiently close to the identity matrix, then a logarithm of B may be computed by means of
the following power series:

o0 (B—1I)* (B-I1* (B-I)°

log(B) = Y (1) ——=B-D -5t

Specifically, if | B — I|| < 1, then the preceding series converges and €'6(8) = B[]



Example:
Logarithm of rotations in the plane

The rotations in the plane give a simple example. A rotation of angle a around the origin is
represented by the 2x2-matrix

4— (cos(a) — sin(a) )
- \sin(a) cos(a) )
For any integer n, the matrix

B, = (oz+27m)<0 _1),
1 0

is a logarithm of A. Thus, the matrix A has infinitely many logarithms. This corresponds to the fact
that the rotation angle is only determined up to multiples of 2rt

In the language of Lie theory, the rotation matrices A are elements of the Lie group SO(2). The
corresponding logarithms B are elements of the Lie algebra so(2), which consists of all skew-
symmetric matrices. The matrix

(54 o)

is a generator of the Lie algebra so(2).



Logarithm of rotations in 3D space

A rotation R € SO(3) in R3 is given by a 3x3 orthogonal matrix.

The logarithm of such a rotation matrix R can be readily computed from the antisymmetric
part of Rodrigues' rotation formulal®! (see also Axis angle). It yields the logarithm of minimal
Frobenius norm, but fails when R has eigenvalues equal to —1 where this is not unique.

Further note that, given rotation matrices A and B,
dg(A, B) := || log(A' B)||F

is the geodesic distance on the 3D manifold of rotation matrices.



Calculating the logarithm of a
diagonalizable matrix

A method for finding In A for a diagonalizable matrix A is the following:

Find the matrix V of eigenvectors of A (each column of Vis an eigenvector of A).
Find the inverse V-1 of V.
Let

A =V1AV.
Then A’ will be a diagonal matrix whose diagonal elements are eigenvalues of A.

Replace each diagonal element of A’ by its (natural) logarithm in order to obtain log A
Then

log A =V(log A V1.

That the logarithm of A might be a complex matrix even if A is real then follows from the fact
that a matrix with real and positive entries might nevertheless have negative or even
complex eigenvalues (this is true for example for rotation matrices). The non-uniqueness of
the logarithm of a matrix follows from the non-uniqueness of the logarithm of a complex
number.



The logarithm of a non-diagonalizable

matrix

The algorithm illustrated above does not work for non-diagonalizable matrices, such as

5 1)

For such matrices one needs to find its Jordan decomposition and, rather than computing the
logarithm of diagonal entries as above, one would calculate the logarithm of the Jordan blocks.

The latter is accomplished by noticing that one can write a Jordan block as

(A
0

0

0
\ 0

1

0
0

0
1
A

0
0

0
0
1

0
0

()\
e 0
0

= A
A1
0 A/

(1>\—1
0 1
0 0
0 0

\0

0

0
)\—1

0
0

0
0
)\—1

0
0

0
0

0
= A(I + K)

| D

0 1 )

where Kis a matrix with zeros on and under the main diagonal. (The number A is nonzero by the
assumption that the matrix whose logarithm one attempts to take is invertible.)



Then, by the Mercator series

2 3 4

M
log(1 — _ o

one gets
K? K3 K*
_|_ I
2 3 4
This series has a finite number of terms (K™ is zero if m is the dimension of K), and so its sum is well-
defined.

log B =log (A(I + K)) = log(AI) 4+ log(I + K) = (log \)I + K —

Using this approach one finds

afs 1-[o )



A Lie group theory perspective

In the theory of Lie groups, there is an exponential map from a Lie algebra g to the corresponding Lie
group G

exp : g — G.
For matrix Lie groups, the elements of g and G are square matrices and the exponential map is given by
the matrix exponential. The inverse map log = eXp_1 is multivalued and coincides with the matrix
logarithm discussed here. The logarithm maps from the Lie group G into the Lie algebra g. Note that the

exponential map is a local diffeomorphism between a neighborhood U of the zero matrix 0 € g and a
neighborhood V of the identity matrix 1 € G'.[6] Thus the (matrix) logarithm is well-defined as a map,

log: VCG—UCyg.
An important corollary of Jacobi's formula then is

log(det(A)) = tr(log A) .












Properties

If A and B are both positive-definite matrices, then
trlog (AB) = trlog (A) + trlog (B),

and if A and B commute, i.e., AB = BA, then

log (AB) = log (A)

log (B).

Substituting in this equation B= A~7, one gets

log (A1) = —log (A).



The power of Exponential and Log of
matrices!

Conversely, given R € SO(3) (with no negative eigenvalues)
consider the problem of finding the axis direction u and the

angle 0 of rotation. Using the matrix exponential,

we can formulate this problem as follows:
determine a unitary vector u and 6 €] — mr, [ such that

R = e,
The matrix logarithm provides the simple answer
5460 = log(R),

or equivalently,

1
Su = ) log(R), whenever6 # 0.



A widely used formula for computing the logarithm of a 3 x 3 rotation matrix is

R' —R),

logR =
5 2sin6

where 6 satisfies 1 4+ 2 cos 6 = trace(R),0 # 0, —m < 6 < m.

When 6 = 0 one has the trivial case R = I and log R = 0.

* Note:



How to calculate the angle?

e Taking the norm both sides of

Su = 5 10g(R),
* We get

I'Sull €] = | log(R) |l

and, since || Sy || = 1, the angle of rotation is related with the norm of log(R) by

0] = [l log(R) .



Summarize

 This means that the direction of the rotation
axis is given by the logarithm of the matrix
associated with u.



The power of Exponential and Log of
matrices!

Conversely, given R € SO(3) (with no negative eigenvalues)
consider the problem of finding the axis direction u and the

angle 0 of rotation. Using the matrix exponential,

we can formulate this problem as follows:
determine a unitary vector u and 6 €] — mr, [ such that

R = e,
The matrix logarithm provides the simple answer
5460 = log(R),

or equivalently,

1
Su = ) log(R), whenever6 # 0.



A widely used formula for computing the logarithm of a 3 x 3 rotation matrix is

R' —R),

logR =
5 2sin6

where 6 satisfies 1 4+ 2 cos 6 = trace(R),0 # 0, —m < 6 < m.

When 6 = 0 one has the trivial case R = I and log R = 0.

* Note:



How to calculate the angle?

e Taking the norm both sides of

Su = 5 10g(R),
* We get

I'Sull €] = | log(R) |l

and, since || Sy || = 1, the angle of rotation is related with the norm of log(R) by

0] = [l log(R) .



Summarize

 This means that the direction of the rotation
axis is given by the logarithm of the matrix
associated with u.



This relationship between skew-symmetric and rotation matrices by
means of exponentials and logarithms are the key to explain the
importance of these matrix functions in rigid motions and robotics. There
are many other geometric problems involving exponentials and logarithms
of matrices. For example, my student Tum and | was working on the

design of trajectories for UAVs in an indoor environments (meaning
assuming without GPS).



Claim: Given a unit quaternion, we
can define a rotation.



What is the matrix for Rq?

* Ans: Itis the matrix representation of R,
* How to find it?
* Ans: Let R, acts on the basis {1, i, j, k}



Here s =

1-2s(¢2 +q7) 2s(qiq; — arar)  25(qigr + 4iqr)

25(q:q; + qrqr)
i 23(%‘% — QjQr)

1-2s(¢? +q;) 2s(gjax — a4y
2s(qjqr +qigr) 1—2s(qf +q7)

|<1||_2 and if g is a unit quaternion, s = 1.



Recovering the axis-angle representation

The axis a and angle 6 corresponding to a quaternion q = q, + ¢;i + q;j + qrk
can be extracted via:

(9i5 955 qr)
¢ﬁ+ﬁ+ﬁ
0 = 2atan2(\/qi2 -+ q]2. -+ q,%,qr),

where atan2 is the two-argument arctangent. Care should be taken when the

(aazaa';lna’z) —

guaternion approaches a real quaternion, since due to degeneracy the axis of an
identity rotation is not well-defined.



Differentiation with respect to the
rotation quaternion

The rotated quaternion p'=q p q* needs to be differentiated with
respect to the rotating quaternion q , when the rotation is estimated from
numerical optimization. The estimation of rotation angle is an essential
procedure in 3D object registration or camera calibration. The derivative
can be represented using the Matrix Calculus notation.

op’ _ op’ op' op' op
0q | 0q Oq, Og, g

= [pa — (pq)*, (pai)” — pdi, (Paj)* — pdj, (Pak)” — pgk].



Types of Matrix Derivatives

Types Scalar Vector Matrix
Oy dy = 0Y

Scalar A—
ox ox ox
Vector @ B_y
ox ox
Matrix ﬁ
0X

Will be covered in Math 173, Advanced linear Algebra.



We also can add a scalar to a vector
and find inverse of a vector!

a-+bi+ci+dk =a-+ .




Now we can multiply two vectors in R®and in R*!
First define it in R3
by viewing them as pure imaginary quaternions

We can express quaternion multiplication in the modern language of vector cross and
dot products (which were actually inspired by the quaternions in the first place [©)).
When multiplying the vector/imaginary parts, in place of the rules

i = j? = k? = ijk = —1 we have the quaternion multiplication rule:

W=V XW—V-W,
where:

e VW is the resulting quaternion,

l

—

e U X W is vector cross product (a vector),

l

-

e ¥ - W is vector scalar product (a scalar).



Quaternion multiplication is noncommutative (because of the
cross product, which anti-commutes), while scalar—scalar and
scalar—vector multiplications commute. From these rules it follows
immediately that (see details):

—

(s+v)(t+w)=(st—v-w)+ (sw+tv+ v x w).



Quaternions are extension of complex numbers

The complex numbers can be defined by introducing an abstract
symbol 1 which satisfies the usual rules of algebra and additionally
the rule i2 = —1. This is sufficient to reproduce all of the rules of
complex number arithmetic: for example:

(a + bi)(c+ di) = ac + adi + bic + bidi
— ac + adl + bci + bdi® = (ac — bd) + (bc + ad)i.

Multiply two quaternions:

(a4 bi+cj + dk)(e + fi+ gj + hk) =
(ae —bf —cg — dh) + (af + be + ch — dg)i+ (ag — bh + ce + df)j + (ah + bg — cf + de)k.

iZ=j’=Kk?=ijk=-1



Notations for using multiple frames
* Pay attention to the subscripts!

T
(=0 o @ @) = (go) : q € R*, lqll2 = 1.
v

A rotation can be defined using unit quaternions as
7= qWV O O (™),
where - denotes the quaternion conjugate, defined as
“=(0 —al),

and ¥ denotes the quaternion representation of =V as

7V — (O (xV)T)T

caution: —¢ describes the same orientation.



* Be able to change quaternion multiplication to
matrix/vector multiplication fluently.

Poqo Pov * Qy L R
®q= = ptq = ¢p,
P 1 (pOQ’U | qoPv | Po X Q’U> P 4P

where

pL 7y <p0 —pI ) qR 7y (CIO —qI ) .
Po PoZls + [PuX]/)’ @  q0ZL3 — [quX]



- uv L vu\R —v
"= (¢") (¢"") T

_ (qO = ) ( 7 a0y
qv QL3+ |quvx]) \—qv qoI3 + |qvX]

Compare with
R™(n¥,a) = I3 — sina[n’ x| + (1 — cos a)[n¥ x]?.

it can be recognized that if we choose

a
q‘”(nv,a)=( "2 )

—mVain &
7181112

_( 1 O1><3
03><1 qug =+ Q(%IB + ZQO[Q'UX] T [Q’UX]Q



the two rotation formulations are equivalent since

U — 1 O1x3 0
-~ \03x1 T3 — 2cos § sin §[n" x] + 2sin? %[nvx]Q 2V
_ 1 01><3 0
a <03><1 I3 — sina[nY x] + (1 — cos ) [nvx]2> (xv) ' (3.31)

Here, we made use of standard trigonometric relations and the fact that since ||n¥|2 = 1, n¥ (n¥)" =

T5 + [n¥ x]?. Hence, it can be concluded that ¢" can be expressed in terms of a and n¥ as in (3.30).




Equivalently, ¢"V(n",a) can also be written as

uv A% o =V - o=V k
¢ (nY,a) = exp(—§n") = Y (-57%)", (3.32)
k=0
where
@)Y’=@1 0 0 0), (3.33a)
T
(n¥)' = (0 (n")T) : (3.33b)
(@) =" on" = (—[n3 0sx1)" = (=1 Osx1) (3.33¢)
T
(%)’ = (0 - (nV)T) , (3.33d)
This leads to
uv( v o=V - a-v\k
q""(n",a) = exp(—gn") = Z % (—En )
k=0
_ L=y +afs —
—onY 4 5% — E5nY +...
— ( cP2 a) , (3.34)
—n Slﬂi

Note the similarity to (3.18) and (3.19). The reason why both rotation matrices and unit quaternions
can be described in terms of an exponential of a rotation vector will be discussed in §3.3.1]




Cautions

Some exiting estimation algorithms typically assume that the
unknown states and parameters are represented in Euclidean space.
— For instance, they assume that the subtraction of two orientations gives

information about the difference in orientation and that the addition of
two orientations is again a valid orientation.

If you work in a parameterizing space, you still need to be careful.

— For instance, due to wrapping and gimbal lock, subtraction of Euler
angles and rotation vectors can result in large numbers even in cases
when the rotations are similar.

Subtraction of unit quaternions and rotation matrices do not in
general result in a valid rotation.

The equality constraints on the norm of unit quaternions and on the
determinant and the orthogonally of rotation matrices are typically
hard to include in the estimation algorithms.

We will discuss some methods later to represent orientation in
estimation algorithms that deals with the issues described above.

— frequently used correct representations and algorithms

we will also discuss some alternative methods to parametrize orientation for
estimation purposes.



dc C(t+ 6t) + C(t)

|
dt 10 ot
Since C(t + 6t) also represents a rotation, we choose to write is as
C'(t+ ot)C(t)A(t)

for some rotation matrix A(t).
Recall that rotations about the x, y, and z axes can be written respectively as

1 0 0 cos# 0 —sinf cosp singp 0
R,= 1[0 cos¢ sing R,=1 0 1 0 R,=|—sinp cosep 0
0 —sing coso sinf 0 cos6 0 0 1



R = R,R,R.

for some ¢, 6, and ¢, which are then known as Tait—Bryan angles. Multiplying R out yields

cos i cos 0 sin o cos 6 —sinf
singsinf cosp —sinpcos¢  sin¢sinpsinf 4+ cospcosp  sin¢cosd
sin ¢ sin @ + sin # cos p cos p  —sin ¢ cos p + sin psinf cos ¢  cos ¢ cos

If ¢, 6, and ¢ approach zero, we can make a small angle approximation yielding

1 0 —0
R=R,R,R,=|—¢ 1 ¢
o —¢ 1

Since 4t is small, we can write

A(t) = I+ 60(t)

where
0 —o0p 06
oV (t) = | op 0 —00 | .
—00 o9 1

Thus, substituting into our original forward-difference yields
dC . CHI+6v(t)) —C(t)
— = lim
dt  st—0 ot

= ) Jim

= C()Q)




where
0 —wy(t)  wy(t)
Q(t) = | w(t) 0 —w, (1)
—wy(t)  ws(t) 0

This is the skew-symmetric form of the angular velocity vector w(t), which we can acquire periodi-
cally from the gyroscope. Thus, we are interested in solving the differential equation

This has the solution



Correct ways we use

Recall the set of rotations is a Lie group, so there
exists an exponential map from a corresponding
Lie algebra.

We use exponential map from so(3) to SO(3) and
logarithm from SO(3) to so(3).

We represent orientations on SO(3) using unit
guaternions or rotation matrices,

We represent orientation deviations using
rotation vectors on R3 (Key! This mimic how we

deal with rotation in R2 using Euler angle.)



Specifically,

we encode an orientation q?‘i in terms of a linearization point parametrized either as a unit quaternion
¢"® or as a rotation matrix R and an orientation deviation using a rotation vector 7;. Assuming that
the orientation deviation is expressed in the body frame bﬁ

—b ~
@ =gt oep (%), R =RPexp(fx]), (3.35)

where analogously to (3.34) and (3.19),

o cosnll2
exp(n) = (%SinMHz ; (3.36a)

exp((x]) = Ts +sin (Inlla) [ x| + (0= cos (nll)) [ <] (3.36D)



Gyroscope measurement models
(Later)

As discussed in §2.2, the gyroscope measures the angular velocity w})b at each time instance t. However,
as shown in §2.4L its measurements are corrupted by a slowly time-varying bias d,, + and noise e, ;. Hence,
the gyroscope measurement model is given by

Yw,t = Wﬁo,t + 5B,t + eg,t' (3.41)



" cosO smB 0 O

4 —-smnB cos® 0 O
Ap =

0 0 1 0O

0 0 0 1

where 0 is the angle of rotation. If we compose two such rotations, “Az and ®Ac, through 6,

and 0, respectively, the product is given by:



