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Directional Derivatives

Definition
Let f be a differentiable real-valued function on E3, and let vp be a
tangent vector to E3. Then the number

vp[f ] =
d

dt
(f (p + tv))|t=0

is called the derivative of f with respect to vp.

We shall refer to vp[f ] as a directional derivative Evidently the derivative
of this function at t = 0 tells the initial rate of change of f as p moves in
the v direction.

Note
U1,U2,U3 is the standard frame field on E3, then Ui [f ] = ∂f /∂xi .

Lemma
If vp = (v1, v2, v3)p is a tangent vector to E3, then

vp[f ] =
∑

vi
∂f

∂xi
(p = (v · ∇f )(p).
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Directional Derivatives

Theorem
Let f and g be functions on E3, vp and wp tangent vectors, a and b
numbers. Then

1. (avp + bwp)[f ] = avp[f ] + bwp[f ].

2. vp[af + bg ] = avp[f ] + bvp[g ].

3. vp[fg ] = vp[f ] · g(p) + f (p) · vp[g ].

Corollary
If V and W are vector fields on E3 and f , g , h are real-valued functions,
then

1. (fV + gW )[h] = fV [h] + gW [h].

2. V [af + bg ] = aV [f ] + bV [g ] for all real numbers a and b.

3. V [fg ] = V [f ] · g + f · V [g ].
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Covariant Derivatives on E3

Definition
Let W be a vector field on E3 and let v be a tangent vector to E3 at the
point p. Then the covariant derivative of W with respect to v is the
tangent vector

∇vW = W (p + tv)′(0)

at the point p.

Evidently
∇vW measures the initial rate of change of W (p) as p moves in the v
direction.
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Covariant Derivatives

Example
Suppose W = x2U1 + yzU3, and v = (−1, 0, 2) at p = (2, 1, 0).

Lemma
If W =

∑
wiUi is a vector field on E3, and v is a tangent vector at p,

then
∇vW =

∑
v[wi ]Ui (p).

In short, to apply ∇v to a vector field, apply v to its Euclidean
coordinates.
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Covariant Derivatives

Theorem
Let v and w be tangent vectors to E3 at p, and let Y and Z be vector
fields on E3. Then

1. ∇av+bwY = a∇vY + b∇wY for all numbers a and b.

2. ∇v (aY + bZ ) = a∇vY + b∇vA for all numbers a and b.

3. ∇v (fY ) = v[f ]Y (p) + f (p)∇vY for all (differentiable) functions f .

4. v[Y · Z ] = ∇vY · Z (p) + Y (p) · ∇vZ .



Covariant Derivatives

Note
We can define ∇VW naturally, where V is also a vector field.

Corollary
Let V ,W ,Y , and Z be vector fields on E3. Then

1. ∇V (aY + bZ ) = a∇VY + b∇VZ for all numbers a and b.

2. ∇fV+gWY = f∇VY + g∇WY for all functions f and g .
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4. V [Y · Z ] = ∇VY · Z + Y · ∇VZ .



Covariant Derivatives

Note
We can define ∇VW naturally, where V is also a vector field.

Corollary
Let V ,W ,Y , and Z be vector fields on E3. Then

1. ∇V (aY + bZ ) = a∇VY + b∇VZ for all numbers a and b.

2. ∇fV+gWY = f∇VY + g∇WY for all functions f and g .

3. ∇V (fY ) = V [f ]Y + f∇VY for all functions f .

4. V [Y · Z ] = ∇VY · Z + Y · ∇VZ .



Covariant Derivative on a Surface

Motivation
We want to systematically study the intrinsic geometry of a surface.

Key
We need to generalize Gauss’s idea

dNp : Tp(S)→ Tp(S),

where N is a normal vector field.

How
We must find a way of differentiating a vector field with respect to a
direction, and this must be compatible with differentiation in a Euclidean
space.



Covariant Derivative on a Surface

Definition
Let w be a differentiable vector field in an open set U ⊂ S and p ∈ U.
Let y ∈ Tp(S). Consider a parametrized curve

α : (−ε, ε)→ U,

with α(0) = p and α′(0) = y , and let w(t), t ∈ (−ε, ε), be the restriction
of the vector field w to the curve α. The vector field obtained by the
normal projection of w ′(0) onto the plane Tp(S) is called the covariant
derivative at p of the vector field w relative to the vector y . This
covariant derivative is denoted by (Dw/dt)(0) or (Dyw)(p).

Where:
A (tangent) vector field in an open set U ⊂ S of a regular surface S is a
correspondence w that assigns to each p ∈ U a vector w(p) ∈ Tp(S).
The vector field w is differentiable at p if, for some parametrization
x(u, v) in p, the components a and b of w = a(u, v)xu + b(u, v)xv in the
basis {xu, xv} are differentiable functions at p. w is differentiable in U if
it is differentiable for every p ∈ U.
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The Covariant Derivative in Local Coordinates

The above definition makes use of the normal vector of S and of a
particular curve α, tangent to y at p. To show that covariant
differentiation is a concept of the intrinsic geometry and that it does not
depend on the choice of the curve α, we shall obtain its expression in
terms of a parametrization x(u, v) of S in p.

Dw

dt
= (a′ + Γ1

11au
′ + Γ1

12av
′ + Γ1

12bu
′ + Γ1

22bv
′)xu

+ (b′ + Γ2
11au

′ + Γ2
12av

′ + Γ2
12bu

′ + Γ2
22bv

′)xv . (1)

This expression shows that Dw/dt depends only on the vector
(u′, v ′) = y and not on the curve α. Furthermore, the surface makes its
appearance in Eq. ?? through the Christoffel symbols, that is, through
the first fundamental form. Our assertions are, therefore, proved.
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The Covariant Derivative in Local Coordinates

Note
The definition of covariant derivative of a vector field is the analogue for
surfaces of the usual differentiation of vectors in the plane.

From the local expression of Dw/dt, we see that if S is a plane, we know
that it is possible to find a parametrization in such a way that
E = G = 1 and F = 0. A quick inspection of the equations that give the
Christoffel symbols shows that in this case the Γk

ij become zero. In this
case, it follows from Eq. ?? that the covariant derivative agrees with the
usual derivative of vectors in the plane (this can also be seen
geometrically from the definition). The covariant derivative is, therefore,
a generalization of the usual derivative of vectors in the plane.
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Appendix: Vector Fields on E3

Definition
A tangent vector vp to E3 consists of two points of E3: its vector part v
and its point of application p.

x

y

z

E3

p = H1,1,1L

p + v = H3,4,3L



Appendix: Vector Fields on E3

Definition
Let p be a point of E3. The set Tp(E3) consisting of all tangent vectors
that have p as point of application is called the tangent space of E3 at p.

Fig. 1.3

Note
We define vp + wp to be (v + w)p, and if c is a number we define c(vp)
to be (cv)p.



Appendix: Vector Fields on E3

Definition
A vector field V on E3 is a function that assigns to each point p of E3 a
tangent vector V (p) to E3 at p.

Lemma
If V is a vector field on E3, there are three uniquely determined
real-valued functions v1, v2, v3 on E3 such that

V = v1U1 + v2U2 + v3U3.

The functions v1, v2, v3 are called the Euclidean coordinate functions of
V .
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Appendix: Vector Fields on E3

Definition
Let U1,U2, and U3 be the vector fields on E3 such that

U1(p) = (1, 0, 0)p

U2(p) = (0, 1, 0)p

U3(p) = (0, 0, 1)p

for each point p of E3. We call U1,U2,U3—collectively—the natural
frame field on E3.
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Appendix: Vector Fields on E3

Definition
Vector fields E1,E2,E3 on E3 constitute a frame field on E3 probided

Ei · Ej = δij (1 ≤ i , j ≤ 3)

where δij is the Kronecker delta.

The term frame field is justified by the fact that at each point p the
three vectors E1(p),E2(p),E3(p) form a frame at p. We anticipated this
by calling U1,U2,U3 the natural frame field on E3.
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Appendix: Vector Fields on E3

Example: The Cylindrical Frame Field
Let r , θ, z be the usual cylindrical coordinate functions on E3. We shall
pick a unit vector field in the direction in which each coordinate increases
(when the other two are held constant).

For r , this is evidently

E1 = cos θU1 + sin θU2,

pointing straight out from the z axis. Then

E2 = − sin θU1 + cos θU2

points in the direction of increasing θ. Finally the direction of increase of
z is, of course, straight up, so

E3 = U3.

It is easy to check that Ei · Ej = δij , so this is a frame field (defined on all
of E3 except the z axis). We call it the cylindrical frame field on E3.
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Appendix: Vector Fields on E3

Example: The Spherical Frame Field
Let E1,E2,E3 be the cylindrical frame field. For spherical coordinates, the
unit vector field F2 in the direction of increasing θ is the same as above,
so F2 = E2.

The unit vector field F1, in the direction of increasing ρ,
points straight out from the origin; hence it may be expressed as

F1 = sinϕE1 + cosϕE3.

Similarly, the vector field for increasing ϕ is

F3 = − cosϕE1 + sinϕE3.

Thus the formulas for E1,E2,E3 yield

F1 = sinϕ(cos θU1 + sin θU2) + cosϕU3

F2 = − sin θU1 + cos θU2

F3 = − cosϕ(cos θU1 + sin θU2) + sinϕU3.
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Appendix: Vector Fields on Surfaces

Definition
A vector field w in an open set U ⊂ S of a regular surface S is a
correspondence which assigns to each p ∈ U a vector w(p) ∈ Tp(S). The
vector field w is differentiable at p ∈ U if, for some parametrization
x(u, v) at p, the functions a(u, v) and b(u, v) given by

w(p) = a(u, v)xu + b(u, v)xv

are differentiable functions at p; it is clear that this definition does not
depend on the choice of x.



Appendix: Vector Fields on Surfaces

Compare
A vector field in an open set U ⊂ R2 is a map which assigns to each
q ∈ U a vector w(q) ∈ R2. The vector field w is said to be differentiable
if writing q = (x , y) and w(q) = (a(x , y), b(x , y)), the functions a and b
are differentiable functions in U.

Geometrically, the definition corresponds to assigning to each point
(x , y) ∈ U a vector with coordinates a(x , y) and b(x , y) which vary
differentiably with (x , y).

x

y

Hx,yL

HaHx,yL,bHx,yLL
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Appendix: Vector Fields on Surfaces

Example
A vector field in the usual torus T is obtained by parametrizing the
meridians of T by arc length and defining w(p) as the velocity vector of
the meridian through p. Notice that ‖w(p)‖ = 1 for all p ∈ T . It is left
as an exercise to verify that w is differentiable.
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Appendix: Vector Fields on Surfaces

Example
A similar procedure, this time on the sphere S2 and using the
semimeridians of S2, yields a vector field w defined in the sphere minus
the two poles N and S . To obtain a vector field defined in the whole
sphere, reparametrize all the semimeridians by the same parameter t,
−1 < t < 1, and define v(p) = (1− t2)w(p) for p ∈ S2 \ {N,S} and
v(N) = v(S) = 0.
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