Lecture 9 Part 1: The First Fundamental Form

Prof. Weiqing Gu

Math 178:
Nonlinear Data Analysis

The First Fundamental Form

An Inner Product on the Tangent Plane

The natural inner product of $\mathbb{R}^{3} \supset S$ induces on each tangent plane $T_{p}(S)$ of a regular surface S an inner product, to be denoted by \langle,\rangle_{p} : If $w_{1}, w_{2} \in T_{p}(S) \subset \mathbb{R}^{3}$, then $\left\langle w_{1}, w_{2}\right\rangle$ is equal to the inner product of w_{1} and w_{2} as vectors in \mathbb{R}^{3}.

The First Fundamental Form

An Inner Product on the Tangent Plane

The natural inner product of $\mathbb{R}^{3} \supset S$ induces on each tangent plane $T_{p}(S)$ of a regular surface S an inner product, to be denoted by \langle,\rangle_{p} : If $w_{1}, w_{2} \in T_{p}(S) \subset \mathbb{R}^{3}$, then $\left\langle w_{1}, w_{2}\right\rangle$ is equal to the inner product of w_{1} and w_{2} as vectors in \mathbb{R}^{3}. Since this inner product is a symmetric bilinear form (i.e. $\left\langle w_{1}, w_{2}\right\rangle=\left\langle w_{2}, w_{1}\right\rangle$ and it is linear in both w_{1} and w_{2}), there corresponds a quadratic form $I_{p}: T_{p}(S) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
I_{p}(w)=\langle w, w\rangle_{p}=\|w\|^{2} \geq 0 \tag{1}
\end{equation*}
$$

The First Fundamental Form

An Inner Product on the Tangent Plane

The natural inner product of $\mathbb{R}^{3} \supset S$ induces on each tangent plane $T_{p}(S)$ of a regular surface S an inner product, to be denoted by \langle,\rangle_{p} : If $w_{1}, w_{2} \in T_{p}(S) \subset \mathbb{R}^{3}$, then $\left\langle w_{1}, w_{2}\right\rangle$ is equal to the inner product of w_{1} and w_{2} as vectors in \mathbb{R}^{3}. Since this inner product is a symmetric bilinear form (i.e. $\left\langle w_{1}, w_{2}\right\rangle=\left\langle w_{2}, w_{1}\right\rangle$ and it is linear in both w_{1} and w_{2}), there corresponds a quadratic form $I_{p}: T_{p}(S) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
I_{p}(w)=\langle w, w\rangle_{p}=\|w\|^{2} \geq 0 \tag{1}
\end{equation*}
$$

Definition

The quadratic form I_{p} on $T_{p}(S)$ defined by Eq. ?? is called the first fundamental form of the regular surface $S \subset \mathbb{R}^{3}$ at $p \in S$.

The First Fundamental Form

An Inner Product on the Tangent Plane

The natural inner product of $\mathbb{R}^{3} \supset S$ induces on each tangent plane $T_{p}(S)$ of a regular surface S an inner product, to be denoted by \langle,\rangle_{p} : If $w_{1}, w_{2} \in T_{p}(S) \subset \mathbb{R}^{3}$, then $\left\langle w_{1}, w_{2}\right\rangle$ is equal to the inner product of w_{1} and w_{2} as vectors in \mathbb{R}^{3}. Since this inner product is a symmetric bilinear form (i.e. $\left\langle w_{1}, w_{2}\right\rangle=\left\langle w_{2}, w_{1}\right\rangle$ and it is linear in both w_{1} and w_{2}), there corresponds a quadratic form $I_{p}: T_{p}(S) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
I_{p}(w)=\langle w, w\rangle_{p}=\|w\|^{2} \geq 0 \tag{1}
\end{equation*}
$$

Definition

The quadratic form I_{p} on $T_{p}(S)$ defined by Eq. ?? is called the first fundamental form of the regular surface $S \subset \mathbb{R}^{3}$ at $p \in S$.

Geometrically, the first fundamental form allows us to make measurements on the surface (lengths of curves, angles of tangent vectors, areas of regions) without referring back to the ambient space \mathbb{R}^{3} where the surface lies.

The First Fundamental Form

Expression in Local Coordinates

We shall now express the first fundamental form in the basis $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ associated to a parametrization $\mathbf{x}(u, v)$ at p.

$$
\begin{aligned}
& w=\alpha^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0} \mathbf{x} \circ \tilde{\alpha}(t)=\left.\frac{d}{d t}\right|_{t=0} \mathbf{x}(u(t), v(t)) \\
& =\mathbf{x}_{u} u^{\prime}(0)+\mathbf{x}_{v} v^{\prime}(0)=\left(\begin{array}{ll}
\mathbf{x}_{u} & \mathbf{x}_{v}
\end{array}\right)\binom{u^{\prime}(0)}{v^{\prime}(0)} \\
& I_{p}(w)=I_{p}\left(\alpha^{\prime}(0)\right)=\left\langle\alpha^{\prime}(0), \alpha^{\prime}(0)\right\rangle_{p} \\
& =\left\langle u^{\prime} \mathbf{x}_{u}+v^{\prime} \mathbf{x}_{v}, u^{\prime} \mathbf{x}_{u}+v^{\prime} \mathbf{x}_{v}\right\rangle \\
& =\left\|\mathbf{x}_{u}\right\|^{2}\left(u^{\prime}\right)^{2}+2 u^{\prime} v^{\prime}\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle+\left\|\mathbf{x}_{v}\right\|^{2}\left(v^{\prime}\right)^{2} \\
& =E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2} \\
& =\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\binom{u^{\prime}}{v^{\prime}} \\
& E(u, v)=\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle, \quad F(u, v)=\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle, \quad G(u, v)=\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle .
\end{aligned}
$$

The First Fundamental Form

Remark

This says that the value of the first fundamental form on an arbitrary vector w is determined by the values of the inner product of the basis vectors.

Examples: Computing the First Fundamental Form

Example

A coordinate system for a plane $P \subset \mathbb{R}^{3}$ passing through $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and containing the orthonormal vectors $w_{1}=\left(a_{1}, a_{2}, a_{3}\right)$ and $w_{2}=\left(b_{1}, b_{2}, b_{3}\right)$ is given as follows:

$$
\mathbf{x}(u, v)=p_{0}+u w_{1}+v w_{2}, \quad(u, v) \in \mathbb{R}^{2}
$$

Examples: Computing the First Fundamental Form

Example

A coordinate system for a plane $P \subset \mathbb{R}^{3}$ passing through $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and containing the orthonormal vectors $w_{1}=\left(a_{1}, a_{2}, a_{3}\right)$ and $w_{2}=\left(b_{1}, b_{2}, b_{3}\right)$ is given as follows:

$$
\mathbf{x}(u, v)=p_{0}+u w_{1}+v w_{2}, \quad(u, v) \in \mathbb{R}^{2}
$$

$$
\mathbf{x}_{u}=w_{1}, \quad \mathbf{x}_{v}=w_{2}
$$

Examples: Computing the First Fundamental Form

Example

A coordinate system for a plane $P \subset \mathbb{R}^{3}$ passing through $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and containing the orthonormal vectors $w_{1}=\left(a_{1}, a_{2}, a_{3}\right)$ and $w_{2}=\left(b_{1}, b_{2}, b_{3}\right)$ is given as follows:

$$
\mathbf{x}(u, v)=p_{0}+u w_{1}+v w_{2}, \quad(u, v) \in \mathbb{R}^{2}
$$

$$
\begin{gathered}
\mathbf{x}_{u}=w_{1}, \quad \mathbf{x}_{v}=w_{2} \\
\Rightarrow E=\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle=\left\langle w_{1}, w_{1}\right\rangle=1 \\
F=\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle=0 \\
G=\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle=1
\end{gathered}
$$

Examples

Example

Consider a helix that is given by $(\cos u, \sin u, a u)$. Through each point of the helix, draw a line parallel to the $x y$ plane and intersecting the z axis. The surface generated by these lines is called a helicoid and admits the following parametrization:

$$
\begin{gathered}
\mathbf{x}(u, v)=(v \cos u, v \sin u, a u) \\
0<u<2 \pi \\
\quad-\infty<v<\infty \\
E=v^{2}+a^{2} \\
F=0 \\
G=1
\end{gathered}
$$

Examples

Example

The right cylinder over the circle $x^{2}+y^{2}=1$ admits the parametrization $\mathbf{x}: U \rightarrow \mathbb{R}^{3}$, where

$$
\begin{aligned}
\mathbf{x}(u, v) & =(\cos u, \sin u, v) \\
U & =\left\{(u, v) \in \mathbb{R}^{2} \mid 0<u<2 \pi\right. \\
& -\infty<v<\infty\} \\
E & =1 \\
F & =0 \\
G & =1
\end{aligned}
$$

(Compare with first example)

Examples

Example

We shall compute the first fundamental form of a sphere at a point of the coordinate neighborhood given by the parametrization

$$
\mathbf{x}(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

Measurements

Arc Length
The arc length s of a parametrized curve $\alpha: I \rightarrow S$ is given by

$$
s(t)=\int_{0}^{t}\left\|\alpha^{\prime}(t)\right\| d t=\int_{0}^{t} \sqrt{I\left(\alpha^{\prime}(t)\right)} d t
$$

Measurements

Arc Length

The arc length s of a parametrized curve $\alpha: I \rightarrow S$ is given by

$$
s(t)=\int_{0}^{t}\left\|\alpha^{\prime}(t)\right\| d t=\int_{0}^{t} \sqrt{I\left(\alpha^{\prime}(t)\right)} d t
$$

In particular, if $\alpha(t)=\mathbf{x}(u(t), v(t))$ is contained in a coordinate neighborhood corresponding to the parametrization $\mathbf{x}(u, v)$, we can compute the arc length of α between, say, 0 and t by

$$
\begin{equation*}
s(t)=\int_{0}^{t} \sqrt{E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}} d t . \tag{2}
\end{equation*}
$$

Measurements

Arc Length

The arc length s of a parametrized curve $\alpha: I \rightarrow S$ is given by

$$
s(t)=\int_{0}^{t}\left\|\alpha^{\prime}(t)\right\| d t=\int_{0}^{t} \sqrt{I\left(\alpha^{\prime}(t)\right)} d t
$$

In particular, if $\alpha(t)=\mathbf{x}(u(t), v(t))$ is contained in a coordinate neighborhood corresponding to the parametrization $\mathbf{x}(u, v)$, we can compute the arc length of α between, say, 0 and t by

$$
\begin{equation*}
s(t)=\int_{0}^{t} \sqrt{E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}} d t . \tag{2}
\end{equation*}
$$

Remark

Because of Eq. ??, many mathematicians talk about the "element" of arc length, $d s$, of S and write

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}
$$

Measurements

Angle
The angle θ under which two parametrized regular curves $\alpha: I \rightarrow S$, $\beta: I \rightarrow S$ intersect at $t=t_{0}$ is given by

$$
\cos \theta=\frac{\left\langle\alpha^{\prime}\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right\rangle}{\left\|\alpha^{\prime}\left(t_{0}\right)\right\|\left\|\beta^{\prime}\left(t_{0}\right)\right\|} .
$$

Measurements

Angle
The angle θ under which two parametrized regular curves $\alpha: I \rightarrow S$, $\beta: I \rightarrow S$ intersect at $t=t_{0}$ is given by

$$
\cos \theta=\frac{\left\langle\alpha^{\prime}\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right\rangle}{\left\|\alpha^{\prime}\left(t_{0}\right)\right\|\left\|\beta^{\prime}\left(t_{0}\right)\right\|} .
$$

In particular, the angle φ of the coordinate curves of a parametrization $\mathbf{x}(u, v)$ is

$$
\cos \varphi=\frac{\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle}{\left\|\mathbf{x}_{u}\right\|\left\|\mathbf{x}_{v}\right\|}=\frac{F}{\sqrt{E G}} ;
$$

Measurements

Angle
The angle θ under which two parametrized regular curves $\alpha: I \rightarrow S$, $\beta: I \rightarrow S$ intersect at $t=t_{0}$ is given by

$$
\cos \theta=\frac{\left\langle\alpha^{\prime}\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right\rangle}{\left\|\alpha^{\prime}\left(t_{0}\right)\right\|\left\|\beta^{\prime}\left(t_{0}\right)\right\|} .
$$

In particular, the angle φ of the coordinate curves of a parametrization $\mathbf{x}(u, v)$ is

$$
\cos \varphi=\frac{\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle}{\left\|\mathbf{x}_{u}\right\|\left\|\mathbf{x}_{v}\right\|}=\frac{F}{\sqrt{E G}} ;
$$

it follows that the coordinate curves of a parametrization are orthogonal if and only if $F(u, v)=0$ for all (u, v). Such a parametrization is called an orthogonal parametrization.

Example

As an application, let us determine the curves in this coordinate neighborhood of the sphere which make a constant angle β with the meridians $\varphi=$ const. These curves are called loxodromes (rhumb lines) of the sphere.

Area

Definition

Let $R \subset S$ be a bounded region of a regular surface contained in the coordinate neighborhood of the parametrization $\mathrm{x}: U \subset \mathbb{R}^{2} \rightarrow S$. The positive number

$$
\iint_{Q}\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right\| d u d v=A(R), \quad Q=\mathbf{x}^{-1}(R)
$$

is called the area of R. Note that $\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right\|=\sqrt{E G-F^{2}}$.

Area

Definition

Let $R \subset S$ be a bounded region of a regular surface contained in the coordinate neighborhood of the parametrization $\mathrm{x}: U \subset \mathbb{R}^{2} \rightarrow S$. The positive number

$$
\iint_{Q}\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right\| d u d v=A(R), \quad Q=\mathbf{x}^{-1}(R)
$$

is called the area of R. Note that $\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right\|=\sqrt{E G-F^{2}}$.

Recall

A (regular) domain of S is an open and connected subset of S such that its boundary is the image of a circle by a differentiable homeomorphism which is regular (that is, its differential is nonzero) except at a finite number of points. A region of S is the union of a domain with its boundary. A region of $S \subset \mathbb{R}^{3}$ is bounded if it is contained in some ball of \mathbb{R}^{3}.

Area

Why is $A(R)$ well-defined?
Let us show that the integral

$$
\iint_{Q}\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right\| d u d v
$$

does not depend on the parametrization \mathbf{x}.

Examples

Example

Let us compute the area of the torus. For that, we consider the coordinate neighborhood corresponding to the parametrization

$$
\begin{aligned}
\mathbf{x}(u, v)= & ((a+r \cos u) \cos v,(a+r \cos u) \sin v, r \sin u) \\
& 0<u<2 \pi, \quad 0<v<2 \pi
\end{aligned}
$$

which covers the torus, except for a meridian and a parallel.

Examples

Example (Surfaces of Revolution)

Let $S \subset \mathbb{R}^{3}$ be the set obtained by rotating a regular plane curve C about an axis in the plane which does not meet the curve; we shall take the $x z$ plane as the plane for the curve and the z axis as the rotation axis.

Examples

Example (Surfaces of Revolution)

Let $S \subset \mathbb{R}^{3}$ be the set obtained by rotating a regular plane curve C about an axis in the plane which does not meet the curve; we shall take the $x z$ plane as the plane for the curve and the z axis as the rotation axis. Let

$$
x=f(v), \quad z=g(v), \quad a<v<b, \quad f(v)>0,
$$

be a parametrization for C and denote by u the rotation angle about the z axis.

Examples

Example (Surfaces of Revolution)

Let $S \subset \mathbb{R}^{3}$ be the set obtained by rotating a regular plane curve C about an axis in the plane which does not meet the curve; we shall take the $x z$ plane as the plane for the curve and the z axis as the rotation axis. Let

$$
x=f(v), \quad z=g(v), \quad a<v<b, \quad f(v)>0,
$$

be a parametrization for C and denote by u the rotation angle about the z axis. Thus, we obtain a map

$$
\mathbf{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

from the open set $U=\left\{(u, v) \in \mathbb{R}^{2} \mid 0<u<2 \pi, a<v<b\right\}$ into S.

Examples

Example (Surfaces of Revolution)

Let $S \subset \mathbb{R}^{3}$ be the set obtained by rotating a regular plane curve C about an axis in the plane which does not meet the curve; we shall take the $x z$ plane as the plane for the curve and the z axis as the rotation axis. Let

$$
x=f(v), \quad z=g(v), \quad a<v<b, \quad f(v)>0
$$

be a parametrization for C and denote by u the rotation angle about the z axis. Thus, we obtain a map

$$
\mathbf{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

from the open set $U=\left\{(u, v) \in \mathbb{R}^{2} \mid 0<u<2 \pi, a<v<b\right\}$ into S.
Claim
S is a regular surface which is called a surface of revolution.

Examples

Example

A parametrization for the torus T can be given by

$$
\mathbf{x}(u, v)=((r \cos u+a) \cos v,(r \cos u+a) \sin v, r \sin u),
$$

where $0<u<2 \pi, 0<v<2 \pi$.

Extended Surfaces of Revolution

Remark

There is a slight problem with our definition of surface of revolution. If $C \subset \mathbb{R}^{2}$ is a closed regular plane curve which is symmetric relative to an axis r of \mathbb{R}^{3}, then, by rotating C about r, we obtain a surface which can be proved to be regular and should also be called a surface of revolution (when C is a circle and r contains a diameter of C, the surface is a sphere). To fit it in our definition, we would have to exclude two of its points, namely, the points where r meets C. For technical reasons, we want to maintain the previous terminology and shall call the latter surfaces extended surfaces of revolution.

