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The First Fundamental Form

An Inner Product on the Tangent Plane
The natural inner product of R3 ⊃ S induces on each tangent plane
Tp(S) of a regular surface S an inner product, to be denoted by 〈 , 〉p: If
w1,w2 ∈ Tp(S) ⊂ R3, then 〈w1,w2〉 is equal to the inner product of w1

and w2 as vectors in R3.

Since this inner product is a symmetric bilinear
form (i.e. 〈w1,w2〉 = 〈w2,w1〉 and it is linear in both w1 and w2), there
corresponds a quadratic form Ip : Tp(S)→ R given by

Ip(w) = 〈w ,w〉p = ‖w‖2 ≥ 0. (1)

Definition
The quadratic form Ip on Tp(S) defined by Eq. ?? is called the first
fundamental form of the regular surface S ⊂ R3 at p ∈ S .

Geometrically, the first fundamental form allows us to make
measurements on the surface (lengths of curves, angles of tangent
vectors, areas of regions) without referring back to the ambient space R3

where the surface lies.
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The First Fundamental Form

Expression in Local Coordinates
We shall now express the first fundamental form in the basis {xu, xv}
associated to a parametrization x(u, v) at p.

w = α′(0) =
d

dt

∣∣∣∣
t=0

x ◦ α̃(t) =
d

dt
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t=0

x(u(t), v(t))

= xuu
′(0) + xvv

′(0) =
(
xu xv

)(u′(0)
v ′(0)

)
Ip(w) = Ip(α′(0)) = 〈α′(0), α′(0)〉p

= 〈u′xu + v ′xv , u
′xu + v ′xv 〉

= ‖xu‖2(u′)2 + 2u′v ′〈xu, xv 〉+ ‖xv‖2(v ′)2

= E (u′)2 + 2Fu′v ′ + G (v ′)2

=
(
u′ v ′

)(E F
F G

)(
u′

v ′

)
E (u, v) = 〈xu, xu〉, F (u, v) = 〈xu, xv 〉, G (u, v) = 〈xv , xv 〉.



The First Fundamental Form

Remark
This says that the value of the first fundamental form on an arbitrary
vector w is determined by the values of the inner product of the basis
vectors.
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!(t) = x-1 !, 
!(t) = (u(t),v(t)) 



Examples: Computing the First Fundamental Form

Example
A coordinate system for a plane P ⊂ R3 passing through p0 = (x0, y0, z0)
and containing the orthonormal vectors w1 = (a1, a2, a3) and
w2 = (b1, b2, b3) is given as follows:

x(u, v) = p0 + uw1 + vw2, (u, v) ∈ R2.

xu = w1, xv = w2

⇒ E = 〈xu, xu〉 = 〈w1,w1〉 = 1

F = 〈xu, xv 〉 = 0

G = 〈xv , xv 〉 = 1
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Examples

Example
Consider a helix that is given by (cos u, sin u, au). Through each point of
the helix, draw a line parallel to the xy plane and intersecting the z axis.
The surface generated by these lines is called a helicoid and admits the
following parametrization:

x(u, v) = (v cos u, v sin u, au),

0 < u < 2π,

−∞ < v <∞.
E = v2 + a2,

F = 0,

G = 1
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Examples

Example
The right cylinder over the circle x2 + y2 = 1 admits the parametrization
x : U → R3, where

x(u, v) = (cos u, sin u, v),

U = {(u, v) ∈ R2 | 0 < u < 2π,

−∞ < v <∞}.
E = 1,

F = 0,

G = 1

(Compare with first example)
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Examples

Example
We shall compute the first fundamental form of a sphere at a point of
the coordinate neighborhood given by the parametrization

x(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ).



Measurements

Arc Length
The arc length s of a parametrized curve α : I → S is given by

s(t) =

∫ t

0

‖α′(t)‖ dt =

∫ t

0

√
I (α′(t)) dt.

In particular, if α(t) = x(u(t), v(t)) is contained in a coordinate
neighborhood corresponding to the parametrization x(u, v), we can
compute the arc length of α between, say, 0 and t by

s(t) =

∫ t

0

√
E (u′)2 + 2Fu′v ′ + G (v ′)2 dt. (2)

Remark
Because of Eq. ??, many mathematicians talk about the “element” of
arc length, ds, of S and write

ds2 = E du2 + 2F du dv + G dv2,
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Measurements

Angle
The angle θ under which two parametrized regular curves α : I → S ,
β : I → S intersect at t = t0 is given by

cos θ =
〈α′(t0), β′(t0)〉
‖α′(t0)‖‖β′(t0)‖

.

In particular, the angle ϕ of the coordinate curves of a parametrization
x(u, v) is

cosϕ =
〈xu, xv 〉
‖xu‖‖xv‖

=
F√
EG

;

it follows that the coordinate curves of a parametrization are orthogonal
if and only if F (u, v) = 0 for all (u, v). Such a parametrization is called
an orthogonal parametrization.
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Example

As an application, let us determine the curves in this coordinate
neighborhood of the sphere which make a constant angle β with the
meridians ϕ = const. These curves are called loxodromes (rhumb lines)
of the sphere.



Area

Definition
Let R ⊂ S be a bounded region of a regular surface contained in the
coordinate neighborhood of the parametrization x : U ⊂ R2 → S . The
positive number∫∫

Q

‖xu ∧ xv‖ du dv = A(R), Q = x−1(R),

is called the area of R. Note that ‖xu ∧ xv‖ =
√
EG − F 2.

Recall
A (regular) domain of S is an open and connected subset of S such that
its boundary is the image of a circle by a differentiable homeomorphism
which is regular (that is, its differential is nonzero) except at a finite
number of points. A region of S is the union of a domain with its
boundary. A region of S ⊂ R3 is bounded if it is contained in some ball
of R3.
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Area

Why is A(R) well-defined?
Let us show that the integral∫∫

Q

‖xu ∧ xv‖ du dv

does not depend on the parametrization x.



Examples

Example
Let us compute the area of the torus. For that, we consider the
coordinate neighborhood corresponding to the parametrization

x(u, v) = ((a + r cos u) cos v , (a + r cos u) sin v , r sin u),

0 < u < 2π, 0 < v < 2π,

which covers the torus, except for a meridian and a parallel.
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Examples

Example (Surfaces of Revolution)
Let S ⊂ R3 be the set obtained by rotating a regular plane curve C about
an axis in the plane which does not meet the curve; we shall take the xz
plane as the plane for the curve and the z axis as the rotation axis.

Let

x = f (v), z = g(v), a < v < b, f (v) > 0,

be a parametrization for C and denote by u the rotation angle about the
z axis. Thus, we obtain a map

x(u, v) = (f (v) cos u, f (v) sin u, g(v))

from the open set U = {(u, v) ∈ R2 | 0 < u < 2π, a < v < b} into S .

Claim
S is a regular surface which is called a surface of revolution.
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Examples

Example
A parametrization for the torus T can be given by

x(u, v) = ((r cos u + a) cos v , (r cos u + a) sin v , r sin u),

where 0 < u < 2π, 0 < v < 2π.
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Extended Surfaces of Revolution

Remark
There is a slight problem with our definition of surface of revolution. If
C ⊂ R2 is a closed regular plane curve which is symmetric relative to an
axis r of R3, then, by rotating C about r , we obtain a surface which can
be proved to be regular and should also be called a surface of revolution
(when C is a circle and r contains a diameter of C , the surface is a
sphere). To fit it in our definition, we would have to exclude two of its
points, namely, the points where r meets C . For technical reasons, we
want to maintain the previous terminology and shall call the latter
surfaces extended surfaces of revolution.




