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Recall: Key Characteristics by Using Moving

Frames

* For curves: Frenet frame and formul
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n = —kt — 7b,
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Key: Express the rate change of the frame in the same frame!
The coefficients involved are the important characteristics.
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Fundamental Theorem of the Local Theory of Curves

Theorem

Given differentiable functions k(s) > 0 and 7(s),s € I, there exists a
regular parametrized curve o : | — R> such that s is the arc length, k(s)
is the curvature, and 7(s) is the torsion of o Moreover, any other curve &
satisfying the same conditions differs from « by a rigid motion; that is,

there exists an orthogonal map p of R3, with positive determinant, and a
vector ¢ such that @ = po a + c.



Curvature and Torsion Locally totally
determine a curve: Local Canonical Form

Let us now take the system Oxyz in such a way that the origin 0 agrees

with «(0) and that t = (1,0,0), n=(0,1,0), and b= (0,0,1). Under

these conditions, a(s) = (x(s),y(s), z(s)) is given by
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where R = (R, Ry, R;). The representation (1) is called the local
canonical form of «, in a neighborhood of s = 0.



A Sketch of projections of the trace of «, for small s, in
the tn, tb, and nb planes:

b

N— ~ n
//
h // N /‘//‘
N ~—_

t

N
A Curve in R3 Projection over the plane tn
b b
/
\ ~ -
— — 1 ‘.\ n
/ o
/

Projection over the plane tb Projection over the plane nb



For Surfaces: Christofel Symbols are basic
characteristics!

e Recall:

Trihedron at a Point of a Surface

S will denote, as usual, a regular, orientable, and oriented surface. Let
x : U C R? — S be a parametrization in the orientation of S. It is
possible to assign to each point of x(U) a natural trihedron given by the
vectors X,, X,, and \.

By expressing the derivatives of the vectors x,, x,, and N in the basis
{x,,x,, N}, we obtain

Xuu = M1Xu + Myxy + LN,

Xy, = [1o%y + Mox, + Lo,

Xy = _.WHxt -+ _.WHx< + LN,

Xpy = 3%y + M3ox, + L3N,

aii1 Xy, + anXy,

=<
I

N, = a12x, + axx,.



For the Lie group SE(3) as the configuration of all rigid
body motions: Gyroscope data are basic characteristics!

 What Does the Gyroscope data measure?

The gyroscope measures the angular velocity of the body frame with respect to the inertial frame,
expressed in the body frame [147], denoted by ch. This angular velocity can be expressed as

wi, = B (i + wen) + wib, (2.2)

where RP" is the rotation matrix from the navigation frame to the body frame. The earth rate, i.e.
the angular velocity of the earth frame with respect to the inertial frame is denoted by wj.. The earth
rotates around its own z-axis in 23.9345 hours with respect to the stars [101]. Hence, the earth rate is
approximately 7.29-107° rad/s.

In case the navigation frame is not defined stationary with respect to the earth, the angular velocity
Wen, ©.e. the transport rate is non-zero. The angular velocity required for navigation purposes — in which
we are interested when determining the orientation of the body frame with respect to the navigation
frame — is denoted by wyp.

Note: Also express the angular velocity of the body frame in the body frame which is a moving frame!



What Does the accelerometer
data measure?

The accelerometer measures the specific force f in the body frame b [147]. This can be expressed as
f* = R™(a} — g™, (2.3)

where g denotes the gravity vector and ai} denotes the linear acceleration of the sensor expressed in the
navigation frame, which is

aj = msmma@w. (2.4)

The subscripts on the linear acceleration a are used to indicate in which frame the differentiation is
performed. For navigation purposes, we are interested in the position of the sensor in the navigation
frame p™ and its derivatives as performed in the navigation frame

Gl =l A, = al 25



A relation between a;; and an, can be derived by using the relation between two rotating coordinate
frames. Given a vector x in a coordinate frame u,

%&c_c — %mi&,\_s = RW %a,\_,\ + wl x z", (2.6)

where w,, is the angular velocity of the v-frame with respect to the u-frame, expressed in the u-frame. For
a derivation of this relation in the context of inertial navigation, see [59, 147|. For a general introduction,
see any textbook on dynamics, e.g. [92, 96].

Using the fact that

mww — mmm ov Awﬂv

the velocity v; and acceleration a;; can be expressed as
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= @Mm + MEK X @m + Ea X Emm X pl, (2.8b)



where we have made use of (2.5), (2.6), and the fact that the angular velocity of the earth is constant,

i.e. MNE = 0. Using the relation between the earth frame and the navigation frame

= moﬁﬁﬁ I_I 3\M®v AM@V

where n,. is the distance from the origin of the earth coordinate frame to the origin of the navigation
oog&sm&m frame, expressions similar to (2.8) can be derived. Note that in general it can not be assumed
that 4 JiWen = 0. Inserting the obtained expressions into (2.8), it is possible to derive the relation between
Qi mb& ann- Instead of deriving these relations, we will assume that the navigation frame is fixed to the
earth frame, and hence R®® and n;, are constant and

v = %ﬁm_ = Pmosﬁs_ = R*" %ﬁs_u =], (2.10a)
ce = diVele = dvil, = (2.10b)

This is a reasonable assumption as long as the sensor does not travel over significant distances as compared
to the size of the earth and it will be one of the model assumptions that we will use in this tutorial.
More on the modeling choices will be discussed in Chapter 3.



Inserting (2.10) into (2.8) and rotating the result, it is possible to express al in terms of al, as

ai = an, + 2wy, X vp + wiy X wiy X p°, (2.11)
where ay,, is the acceleration required for navigation purposes. The term wj, X wi x p* is known as the
centrifugal acceleration and 2wi, X vy is known as the Coriolis acceleration. The centrifugal acceleration

is typically absorbed in the (local) gravity vector. In Example 2.2, we illustrate the magnitude of both
the centrifugal and the Coriolis acceleration.



Example 2.2 (Magnitude of centrifugal and Coriolis acceleration) The centrifugal acceleration
depends on the location on the earth. It is possible to get a feeling for its magnitude by considering the
property of the cross product stating that

lwie x wie X p™la < flwicll2llwiell2llp™(|2- (2.12)

Since the magnitude of w;. is approximately 7.29-107° rad/s and the average radius of the earth is
6371 km [101], the magnitude of the centrifugal acceleration is less than or equal to 3.39-1072 m/s?.
The Coriolis acceleration depends on the speed of the sensor. Let us consider a person walking at a
speed of 5 km/h. In that case the magnitude of the Coriolis acceleration is approzimately 2.03 - 10~ m/s2.
For a car traveling at 120 km/h, the magnitude of the Coriolis acceleration is instead 4.86-1073 m/s?.



Important concept: Intrinsic Geometry

* Only depend on the first fundamental form for the surface.
* In general, only depend on the Riemannian metric.



._.rmnomm_nmm:ﬁm _.n \.L.u»HH“m.m«mnm__maﬁrmﬁvlﬁoﬁm\m&:éo\mo*m
in the parametrization x. Since x,, = X,,, we conclude that '}, = '},
and %, = 3;; that is, the Christoffel symbols are symmetric relative to

the lower indices.

To determine the Christoffel symbols, we take the inner product of the
first four relations with x, and x,,, obtaining the system

A‘JHm + T2 F = (Xuu, Xu) = 2E,,
M1 F + TG = (Xuusxv) = Fuy — 3E,,
Aimm +T%F = (X, Xu) = E,.
TF +T16 = (X, %) = 3Gy,
A\&Nm +T2,F = (Xy,xy) = F, — 1G,,
[T5F + 13,6 = (xu,x,) = 56,



E, F G are the coefficient of the first
fundamental form.
* What is the first fundamental form?

* See slides on Lecture 9 Part 2.
* Key: E, F, G are determined by the Riemannian metric.



Whatis a Riemannian metric?



Overview of Riemannian Mebric
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Review for Inner product on R" and
isometry of regular surfaces

Formally, an inner product space is a vector space V over the field F together with an inner product, i.e., with a map
(,):VxV S F
that satisfies the following three axioms for all vectors T, Y,z € V/ and all scalars ae€ F
¢ Conjugate symmetry:
(z,y) = (y, ).

Note that when F' = R, conjugate symmetry reduces to symmetry.

¢ Linearity in the first argument:

(az,y) = a{z,y).

(x+y,2) = (x,2) + (3, 2).
¢ Positive-definiteness:

(x,2) >0

(z,2) =0=>2=0

DEFINITION 1. A diffeomorphism ¢:S — S is an isometry if for all
P € S and all pairs w,, w, € T,(S) we have

A<<: <<~Vu = Aaﬁuﬁi_vu Q%cﬁiqueAE.



Riemalhnina Mekbrics

2.1 DEFINITION. A Riemannion melric (or Riemannian structure)

on a differentiable manifold M is a correspondence which associates
to each point p of M an inner product (,)p (that is, a symmetric,
bilinear, positive-definite form) on the tangent space TpM, which
varies differentiably in the following sense: If xxUCR'—- M
is a system of coordinates around p, with x(z1,Z2,.--,Zn) = ¢ €
x(U) and z2=(q) = dxq(0,..-,1,...,0), then (2 (9): 725 (D))a =
9ij(T1,..+,%n) is 8 differentiable function on U.

It is usual to delete the index p in the function ( , ), when-
ever there is no possibility of confusion. The function gi; (= gji) is
called the local representation of the Riemannian metric (or “the g;;
of the metric”) in the coordinate system x:U C R™ — M. A differ-
entiable manifold with a given Riemannian metric will be called a
Riemannian manifold.




2.2 DEFINITION. Let M and N be Riemannian manifolds. A

a.. eomorphism f: M — N (that is, f is a differentiable bijection
with a differentiable inverse) is called an wsometry if:

(1) (w,v), = (dfp(u), &m.?vv\@. for all p € M, u,v € T, M.

% If there exists on isometry £: M= N, then
M ond N are said to be isometvic.

2.3 DEFINITION. Let M and N be Riemannian manifolds. A
differentiable mapping f: M — N is a local isometry at p € M if
there is a neighborhood U C M of p such that f:U — f(U) is a
diffeomorphism satisfying (1).

A It is common to say that a Riemannian manifold M is locally

isometric to a Riemannian manifold N if for every p in M there exists
a neighborhood U of p in M and a local isometry f:U — f(U) C N.




Example: The Gaussian Curvature can be written as
an algebraic combination of E, F, G and their

derivatives!
Therefore, K is determined by the Riemannian

metric!
So Gaussian Curvature is an intrinsic characteristic!

eg — 2
(M2)u — (T31)v + Tl + Ml — T3 — MM, = Immm =

— _EK. (1)




