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Polynomial PCA

How should we generalize PCA to the nonlinear case? One possibility is
to transform the set of input variables using a quadratic, cubic, or higher-
degree polynomial, and then apply linear PCA (Gnanadesikan and Wilk,
1969). The resulting polynomial PCA again boils down to an eigenanaly-
sis, but this time attention is focused on the smallest few eigenvalues for
nonlinear dimensionality reduction.

In the quadratic PCA case, for example, the r-vector X is transformed
into an extended r’-vector X', where " = 2r + r(r — 1)/2. Here, X’ in-
cludes the original r variables plus r quadratic powers and r(r — 1)/2
cross-products of the elements of X. Thus, for the bivariate case (r = 2),
quadratic PCA transforms X = (X, X») to X’ = (X1, X, X7, X2, X1 X5),
and a linear PCA is carried out on the five transformed variables of X’.
If the bivariate observations follow an exact quadratic curve, the smallest
eigenvalue of the covariance matrix of the extended vector will be zero, and

the scores of the last principal component will be constant with a value of
Z€ro.



Example of Polynomial PCA

Consider, for example, the noiseless case in which n = 201 bivariate
observations, (X7, Xs), are generated to lie exactly on the quadratic curve
Xy =4X? +4X, + 2, where X; = —1.5(0.01)0.5. Suppose we carry out a
linear PCA on the extended vector (X%, X2, X1, X5, X1X>) and obtain five
sets of principal component scores. See the upper panel of Table 16.1 for the
eigenanalysis. The scatterplot matrix of the first four pairs of PC scores is
given in Figure 16.1 and shows the pretzel-like shapes of the pairwise PCs.
The last PC is not displayed because all its values are zero. The hyperplane
defined by the zero eigenvalue is 0.696X; — 0.0174X5 + 0.696X%? = 0 or
Xy = 4X? + 4X,, which recovers the original quadratic curve (except for
the constant). By varying the constant a, we can display a family of possible
quadratic curves Xo = 4X#? +4X, + a, and the constant a can be recovered
from that curve that passes through each data point. The last PC (actually,
PC5/0.0174 + X5) is plotted in Figure 16.2 against Xy, for a = 0,1,2, 3,
where we see that a = 2.



Suppose we now add standard Gaussian noise (mean 0, variance 1) in-
dependently to the X; and Xs-coordinates of each observation and then
repeat the linear PCA on the resulting extended vector. How would the
eigenanalysis and the PCA scatterplot matrix of the noiseless case be
affected? For this noisy case, see the lower panel of Table 16.1. The eigen-
values are each greater than the respective eigenvalues from the noiseless
case, with the smallest eigenvalue now 0.247. As we would expect, some of
the well-defined patterns in the scatterplot matrix become blurred in the
noisy case. Even if we significantly reduce the variance of the added noise
component, the results of the quadratic PCA will still be strongly affected
by the noisiness of the data.



TABLE 16.1. Quadratic PCA for the bivariate data (X1, X2), where X1 =
—1.5(0.01)0.5, X5 = 4X? + 4X; + 2, and n = 201. Eigenanalysis of the
covariance matriz of the variables (X1, X2, X7, X3, X1 X5) for the noiseless

and noisy cases. The noisy case is obtained by replacing X1 by X1+ Z and,
independently, Xo by Xo + Z, where Z ~ N(0,1).

Noiseless Case

Eigenvalues 46.722 4.912 0.052 0.050 0.000
Eigenvectors

X1 0.003 -0.253 0.620 0.115 0.696

X2 —0.173 -0.013 0.337 -0.909 -0.174

X7 -0.046 0243 -0.578 -0.342  0.696

X5 -0979 -0.102 -0.063  0.165  0.000

X1X2 0.097 -0.929 -0.333 -0.129 0.000

Noisy Case

FEigenvalues 74.617 10.229 2.073 0.336 0.247
Eigenvectors

X1 0.012 -0.271 -0.081 -0.380 —0.880

X2 —0.165 0.000 0.009 -0.906 0.388

X?  -0.019 0.357 -0.934 -0.014 -0.019

X5 0980 -0.120 -0.027 0.160 —0.043

X1 X2 0.121 -0.886 —0.348 0.089 0.268




6 -4 2 0 2 4 ., , ., , [05-03-0.101030507

T T
o o,

-5
PC1 L 10

o oooo.... -15

-20

PC2

> ADS M
T T SR S S S

0.4
eeee®®® 02

0.0

0.4

071 0.8

0.57 0y

0.3 e,

017 * PC4
-0.11

-0.37

-0.5

20 -15-10 -5 0 5 -0.8-0.6-0.4-0.2 0.0 0.2 0.4

FIGURE 16.1. Scatterplot matrixz of the pairwise scores of the first four
principal components from quadratic PCA using the covariance matrix. The
last principal component has all its values equal to zero and is not displayed.



MDS

e Work out details with the students on the
board.



ISOMAP

* Original paper was published on Science

¢ https://web.mit.edu/cocosci/Papers/sci_reprint.pdf



Results of ISOMAP
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Result of ISOMAP

Bottom loop articulation
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Projection Index

Consider a data point x € R" and let f(\) be a curve. Project x to a
point on f(\) that is closest (in Euclidean distance) to x. Let

Ar(x) = sup {A x — £ = inf }x — f(u)ll} (16.5)
pY M

be the projection index, A\¢ : R" — R, which produces a value of A for which
f(\) is closest to x. In the unlikely event that there are multiple points on
the curve closest to x (called ambiguity points), the projection index will
pick that point with the largest value of the projection index. Note that A¢
can be a discontinuous function.

Note: A curve in R/r is just an extension of a curve in R"3.



Curve in RA3 => Curve in RAr

A one-dimensional curve in an r-dimensional space is an analogue of a
straight line in R". To formalize this notion, we define a one-dimensional
curve in " as a function f : A — R", for A C R, so that

f(A) = (f1(A), -, fr(N)7 (16.1)

is an r-vector parameterized by A € A. For example, the unit circle in R2,
{(z1,29) € R? : 29 + 25 = 1}, is a one-dimensional curve that can be
parameterized as

FO\) = (f1(\), f2(\)7 = (cos A\, sin \)™, A € [0.27). (16.2)



Principal Curves

We define the reconstruction error as the expected squared distance be-
tween X (or its associated density) and f,

DX, £) = E {|X — £(A(X)) |12} (16.6)
If f(\) satisfies
f(A) = E{X|\¢(X) = A}, for almost every A € A, (16.7)

then f(\) is said to be self-consistent or a principal curve for X (or its
associated density px ). Thus, for any point on the curve, f()\) is the average
of all those data values that project to that point.



Example: Principal Curve in RA3

https://www.youtube.com/watch?v=xhHe0C2iUsY




How to find Principal Curve?
Projection-Expectation Algorithm

Basically an Expectation and Maximization Algorithm!
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FIGURE 16.3. Principal curve fitted to 100 randomly generated obser-
vations in two dimensions, where Xs s a quadratic function of Xi1 plus
Gausstan noise with mean 0 and standard deviation 0.1. Left panel: ini-
tial iteration, first principal component, D? = 1023.3. Right panel: final
iteration. principal curve. D? = 0.54.



Principal Surfaces

 See the video.



Manifold Learning
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FIGURE 16.6. Left panel: The S-curve, a two-dimensional S-shaped man-
ifold embedded in three-dimensional space. Right panel: 2,000 data points
randomly generated to lie on the surface of the S-shaped manifold.



ISOMAP
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FIGURE 16.7. Left panel: The Swiss Roll: a two-dimensional manifold
embedded in three-dimensional space. Right panel: 20,000 data points lying
on the surface of the swiss-roll manifold.



ISOMAP

e Work out details with the students on the
board.



Result of the ISOMAP

Two-dimensional Isomap embedding (with neighborhood graph).
30

10

-10

,"4'

\ )» Wl\\\ ’\ > ‘
;: SF sy

-30
-60

FIGURE 16.9. Two-dimensional ISOMAP embedding, with neighborhood
graph, of the n = 1,000 Swiss roll data points. The number of neighborhood
points 1s K = 7.



Spectral Clustering

e Work out details with students on the board.



Result of spectral clustering
on the right
K-mean on the left




Result of spectral clustering
on the right
K-mean on the left




Laplacian Eigenmaps:
people.cs.uchicago.edu/"misha/ManifoldLearning/index.html
HLLE: basis.stanford.edu/WWW/HLLE/frontdov.htm

See Martinez and Martinez (2005, Section 3.2 and Appendix B). There is
also a Matlab_Toolbox for Dimensionality Reduction, which is down-
loadable from the website

WWW.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten

and includes all the methods discussed in this chapter and many data
sets. There is, at present, no S-PLUS/R code for IsomaAP, LLE, Laplacian
eigenmaps, or HLLE.



Software

The website www.iro.umontreal.ca/“kegl/research/pcurves gives a
review of the area of principal curves and gives an introduction to algo-
rithms and software. The S-PLUS/R computer packages princurve and
pcurve, both based on S-code originally written by Hastie, are available
for fitting a principal curve to multivariate data. MATLAB code for principal
curves is available at lear.inrialpes.fr/ verbeek/software.

There are several publicly available computer programs for performing
kernel PCA; see, for example, the kcpa function included in the R package
kernlab, which can be downloaded from CRAN.

MATLAB code for implementing IsoMAP, LLE, and HLLE is publicly
available at the following websites:

[SOMAP: isomap.stanford.edu

LLE: www.cs.toronto.edu/ "roweis/lle/



* Please check this out on manifold learning
with codes.

https://scikit-learn.org/stable/modules/manifold.html
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Gaussian...

scikit-learn v0.21.2
Other versions

Please cite us if you use A
the software.

2.2. Manifold learning

2.2.1. Introduction

2.2.2. Isomap

= 2.2.2.1. Complexity

2.2.3. Locally Linear Embedding
= 2.2.3.1. Complexity

2.2.4. Modified Locally Linear
Embedding

= 2.2.4.1. Complexity

2.2.5. Hessian Eigenmapping
= 2.2.5.1. Complexity

2.2.6. Spectral Embedding

= 2.2.6.1. Complexity

2.2.7. Local Tangent Space
Alignment

= 2.2.7.1. Complexity

2.2.8. Multi-dimensional Scaling
(MDS)

= 2.2.8.1. Metric MDS

= 2.2.8.2. Nonmetric MDS
2.2.9. t-distributed Stochastic
Neighbor Embedding (t-SNE)
= 2.2.9.1. Optimizing t-SNE

= 2.2.9.2. Barnes-Hut t-SNE
2.2.10. Tips on practical use

Home

Installation

Documentation ~

2.2. Manifold learning

Manifold Learning with 1000 points, 10 neighbors

LLE (0.13 sec)

Examples

LTSA (0.25 sec)

Hessian LLE (0.43 sec)

soogle Custom Search

Look for the bare necessities
The simple bare necessities

Forget about your worries and your strife

I mean the bare necessities
Old Mother Nature’s recipes

That bring the bare necessities of life

— Baloo’s song [The Jungle Book]

Modified LLE (0.25 sec)

PSS

Isomap (0.36 sec)

MDS (2.2 sec)

SpectralEmbedding (0.17 sec)

t-SNE (6.3 sec)
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